留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能

黄文益 江鸿杰 王一博 刘崇宇 黄宏锋

黄文益, 江鸿杰, 王一博, 等. 6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能[J]. 复合材料学报, 2021, 38(12): 4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004
引用本文: 黄文益, 江鸿杰, 王一博, 等. 6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能[J]. 复合材料学报, 2021, 38(12): 4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004
HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004
Citation: HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004

6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能

doi: 10.13801/j.cnki.fhclxb.20210309.004
基金项目: 国家自然科学基金(52061011);广西自然科学基金(2018GXNSFBA281074);广西科技基地和人才专项(GKAD19110087)
详细信息
    通讯作者:

    江鸿杰,博士,讲师,硕士生导师,研究方向为铝合金及其复合材料 E-mail:jhj2014@glut.edu.cn

  • 中图分类号: TB331

Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer

  • 摘要: 采用热轧法制备出具有颗粒层状结构的6061p/7075铝基复合材料以改善7075铝合金的阻尼性能。通过OM、SEM、EDS和XRD分析6061p/7075层状铝基复合材料的微观组织,分别采用万能力学试验机和动态热机械分析仪分析其力学性能和阻尼行为。研究表明,6061铝颗粒层存在大量的颗粒间界面和微小孔隙,6061铝颗粒层与7075铝基体之间界面结合良好,没有发生界面反应;6061p/7075层状铝基复合材料最大抗拉强度为370.5 MPa,比7075铝基体提高了30%;6061p/7075层状铝基复合材料和基体材料的内耗值分别随着温度和应变量的升高而增大,复合材料的阻尼性能明显优于7075铝基体,在360℃时,复合材料的内耗值高达0.117,比7075铝基体提高了149%;6061p/7075层状铝基复合材料和基体材料的储能模量分别随着温度和应变量的升高而降低,在30℃时,复合材料的储能模量为38601 MPa,比7075铝基体高16%。

     

  • 图  1  轧制制备6061p/7075层状铝基复合材料原理图

    Figure  1.  Schematic diagram of rolling preparation 6061p/7075Al layered composites

    图  2  6061p/7075层状铝基复合材料的SEM图像:整体形貌 (a)、界面 (b) 和6061铝颗粒层 (c)

    Figure  2.  6061p/7075Al layered composites SEM images of overall morphology (a), interface (b) and 6061Al particles layer (c)

    图  3  6061p/7075层状铝基复合材料界面处的EDS线扫描图

    Figure  3.  EDS line scanning images of 6061p/7075Al layered composites interface

    图  4  7075铝基体、6061铝颗粒和6061p/7075层状铝基复合材料的XRD图谱

    Figure  4.  XRD patterns of 7075Al, 6061Al particles and 6061p/7075Al layered composites

    图  5  6061p/7075层状铝基复合材料拉伸断口的整体 (a)、界面 (b)、6061铝颗粒层 (c) 和7075铝基体 (d) 形貌

    Figure  5.  Tensile fracture morphologies of overall morphology (a), interface (b), 6061Al particles layer (c) and 7075Al matrix (d) of 6061p/7075Al layered composites

    图  6  7075铝基体和6061p/7075铝基复合材料应力-应变曲线

    Figure  6.  Stress-strain curves of 7075Al matrix and 6061p/7075Al layered composites

    图  7  7075铝基体和6061p/7075层状铝基复合材料的内耗-温度曲线 (a) 和内耗-应变曲线 (b)

    Figure  7.  Internal friction-temperature curves (a) and internal friction-strain curves (b) of 7075Al matrix and 6061p/7075Al layered composites

    A—Vibration amplitude; f—Frequency; T—Temperature

    图  8  7075铝基体和6061p/7075层状铝基复合材料的储能模量-温度曲线 (a) 和储能模量-应变曲线 (b)

    Figure  8.  Storage modulus-temperature curves (a) and storage modulus-strain curves (b) of 7075Al matrix and 6061p/7075Al layered composites

    表  1  7075铝板和6061铝颗粒化学成分

    Table  1.   Chemical compositions of 7075 aluminum plates and 6061 aluminum particles wt%

    ElementZnMgCuFeSiMnCrTiOthersAl
    7075Al plates 6.08 2.55 1.82 0.23 0.09 0.09 0.21 0.03 0.05 Allowance
    6061Al particle 0.25 0.9 0.2 0.7 0.5 0.15 0.1 0.15 0.05 Allowance
    下载: 导出CSV
  • [1] FU J, WANG S, WANG K. Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state[J]. Journal of Materials Science,2018,53(13):9790-9805. doi: 10.1007/s10853-018-2246-z
    [2] ZHOU P, SONG Y, HUA L, et al. Mechanical behavior and deformation mechanism of 7075 aluminum alloy under solution induced dynamic strain aging[J]. Materials Science and Engineering A,2019,759:498-505. doi: 10.1016/j.msea.2019.05.071
    [3] JIANG H J, CHEN Y, LIU C Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. doi: 10.1016/j.jallcom.2017.12.234
    [4] 马绪强, 苏正涛. 结构阻尼混杂复合材料研究进展[J]. 宇航材料工艺, 2020, 50(6):5-11.

    MA X Q, SU Z T. Research progress of structural damping hybrid composites[J]. Aerospace Materials and Technology,2020,50(6):5-11(in Chinese).
    [5] ZHANG Z, ZHANG X, HE D. Forming and warm die quenching process for AA7075 aluminum alloy and its application[J]. Journal of Materials Engineering and Performance,2020,29:620-625. doi: 10.1007/s11665-019-04545-7
    [6] JIANG H J, LIU C Y, ZHANG B, et al. Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing[J]. Materials Characterization,2017,131:425-430. doi: 10.1016/j.matchar.2017.07.037
    [7] CHEN Y, LIU C Y, ZHANG B, et al. Effects of friction stir processing and minor Sc addition on the microstructure, mechanical properties and damping capacity of 7055 Al alloy[J]. Materials Characterization,2017,135:25-31.
    [8] JIANG H J, LIU C Y, YANG Z X, et al. Effect of friction stir processing on the microstructure, damping capacity and mechanical properties of Al-Si Alloy[J]. Journal of Materials Engineering and Performance,2019,28:1173-1179. doi: 10.1007/s11665-018-3844-2
    [9] 张忠明, 胡博, 高峰涛, 等. 往复挤压法制备Al2O3P/Al复合材料的室温阻尼性能[J]. 复合材料学报, 2011, 28(4):130-135.

    ZHANG Z M, HU B, GAO F T, et al. Room temperature damping properties of Al2O3P/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28(4):130-135(in Chinese).
    [10] GAO Y X, WANG X P, JIANG W B, et al. High damping capacity and low density M2052/Al composites fabricated by accumulative roll bonding[J]. Journal of Alloys and Compounds,2018,757:415-422. doi: 10.1016/j.jallcom.2018.05.104
    [11] YE T, XU Y, REN J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite[J]. Materials Science and Engineering A,2019,753:146-155. doi: 10.1016/j.msea.2019.03.037
    [12] LIU C G, YU L M, MA Z Q, et al. Damping capacity of Al-12Si composites effected by negative thermal expansion of Y2W3O12 particle inclusions[J]. Journal of Materials Research and Technology,2020,9(5):9985-9995. doi: 10.1016/j.jmrt.2020.07.008
    [13] 陈东, 乐永康, 白亮, 等. 原位TiB2/7055铝基复合材料的力学性能与阻尼性能[J]. 功能材料, 2006, 10:1599-1602.

    CHEN D, LE Y K, BAI L, et al. Mechanical and damping properties of in-situ TiB2/7055 aluminum matrix compo-sites[J]. Functional Materials,2006,10:1599-1602(in Chinese).
    [14] CARVALHO O, MIRANDA G, BUCIUMEANU M, et al. High temperature damping behavior and dynamic Young’s modulus of AlSi-CNT-SiCp hybrid composite[J]. Compo-site Structures,2016,141:155-162. doi: 10.1016/j.compstruct.2016.01.046
    [15] CHEN H M, GUO W P, LIU Z M, et al. Interface and damping capacity of Mg/Al multilayered composite produced by accumulative roll bonding[J]. Materials Science Forum,2016,849:838-843. doi: 10.4028/www.scientific.net/MSF.849.838
    [16] ZHENG W, GAO Y X, WANG X P, et al. High strength and damping capacity of LLZNO/Al composites fabricated by accumulative roll bonding[J]. Materials Science and Engineering A,2017,689:306-312. doi: 10.1016/j.msea.2017.02.074
    [17] WU C, WU J, MA K, et al. Synthesis of AA7075-AA7075/B4C bilayer composite with enhanced mechanical strength via plasma activated sintering[J]. Journal of Alloys and Compounds,2017,701:416-424. doi: 10.1016/j.jallcom.2017.01.065
    [18] 王健, 郑学丰, 付昌云, 等. 碳纤维/环氧树脂复合材料-铝合金层合板深拉成型特性[J]. 复合材料学报, 2019, 36(12):2786-2794.

    WANG J, ZHENG X F, FU C Y, et al. Deep drawing characteristics of carbon fiber/epoxy resin composite-aluminum alloy laminated sheet[J]. Acta Materiae Compositae Sinica,2019,36(12):2786-2794(in Chinese).
    [19] 王振军, 田亮, 蔡长春, 等. CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为[J]. 中国有色金属学报, 2019, 29(3):458-466.

    WANG Z J, TIAN L, CAI C C, et al. Progressive damage and elastoplastic mechanical behavior of CF/Al composites by transverse tensile[J]. The Chinese Journal of Nonferrous Metals,2019,29(3):458-466(in Chinese).
    [20] 刘玲, 黄争鸣, 周烨欣, 等. 超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J]. 复合材料学报, 2007, 24(4):166-171.

    LIU L, HUANG Z M, ZHOU Y X, et al. Mode I interlaminar fracture toughness analysis of microfiber reinforced composites[J]. Acta Materiae Compositae Sinica,2007,24(4):166-171(in Chinese).
    [21] ZHANG X, YU Y, LIU B, et al. Mechanical properties and tensile fracture mechanism investigation of Al/Cu/Ti/Cu/Al laminated composites fabricated by rolling[J]. Journal of Alloys and Compounds,2019,805:338-345. doi: 10.1016/j.jallcom.2019.07.064
    [22] WEI J N, GONG C L, CHENG H F, et al. Low-frequency damping behavior of foamed commercially pure aluminum[J]. Materials Science and Engineering A,2002,332(1):375-381.
    [23] JIANG H J, ZHANG B, LIU C Y, et al. Mechanical and damping behavior of age-hardened and non-age-hardened Al alloys after friction stir processing[J]. Acta Metallurgica Sinica (English Letters),2019,32(9):1135-1141. doi: 10.1007/s40195-019-00905-3
    [24] GOLOVIN I S, SINNING H R, GOKEN J, et al. Fatigue-related damping in some cellular metallic materials[J]. Materials Science and Engineering A,2004,370:537-541. doi: 10.1016/j.msea.2003.08.090
    [25] KATONA B, SZLANCSIK A, TABI T, et al. Compressive characteristics and low frequency damping of aluminium matrix syntactic foams[J]. Materials Science and Engineering A,2019,739:140-148. doi: 10.1016/j.msea.2018.10.014
    [26] LOPERA H A C, SALVA H R, ROLDAN C C, et al. Internal friction and shear modulus of Ti32Zr18Ni50 hydrogen storage alloy[J]. Materials Science and Technology,2013,21(2):191-196.
    [27] NI N, WEN Y, HE D, et al. Synchronous improvement of loss factors and storage modulus of structural damping composite with functionalized polyamide nonwoven fabrics[J]. Materials and Design,2016,94:377-383. doi: 10.1016/j.matdes.2015.12.159
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1468
  • HTML全文浏览量:  509
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 录用日期:  2021-02-09
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回