留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含氟聚芳醚酮超疏水涂层及其性能

杨硕 李志文 张文梦 陈栋阳

杨硕, 李志文, 张文梦, 等. 含氟聚芳醚酮超疏水涂层及其性能[J]. 复合材料学报, 2021, 38(12): 4004-4013. doi: 10.13801/j.cnki.fhclxb.20210210.005
引用本文: 杨硕, 李志文, 张文梦, 等. 含氟聚芳醚酮超疏水涂层及其性能[J]. 复合材料学报, 2021, 38(12): 4004-4013. doi: 10.13801/j.cnki.fhclxb.20210210.005
YANG Shuo, LI Zhiwen, ZHANG Wenmeng, et al. Fluorinated poly(aryl ether ketone) superhydrophobic coatings and their properties[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4004-4013. doi: 10.13801/j.cnki.fhclxb.20210210.005
Citation: YANG Shuo, LI Zhiwen, ZHANG Wenmeng, et al. Fluorinated poly(aryl ether ketone) superhydrophobic coatings and their properties[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4004-4013. doi: 10.13801/j.cnki.fhclxb.20210210.005

含氟聚芳醚酮超疏水涂层及其性能

doi: 10.13801/j.cnki.fhclxb.20210210.005
基金项目: 国家自然科学基金(51873037)
详细信息
    通讯作者:

    陈栋阳,博士,教授,博士生导师,研究方向为功能高分子材料  E-mail:dongyang.chen@fzu.edu.cn

  • 中图分类号: TB332

Fluorinated poly(aryl ether ketone) superhydrophobic coatings and their properties

  • 摘要: 使用由双酚AF和4,4-二氟二苯甲酮缩聚而得的含氟聚芳醚酮(FPAEK)为树脂基体,以疏水气相SiO2和碳纳米管(CNT)为无机掺杂纳米粒子,采用一步喷涂法在铝板表面制备了一种SiO2-CNT/FPAEK超疏水涂层。研究发现,当SiO2和CNT掺杂量都为1wt%时,所得涂层的超疏水性能最好,其水接触角WCA可达到167°,滚动角SA为3°。该涂层的玻璃转化温度和初始分解温度分别达到170℃和480℃,热稳定性优异。将该涂层分别在pH=1的HCl溶液、pH=13的NaOH溶液和质量分数为3.5wt%的NaCl溶液中浸泡13天,WCA都维持在150°以上,说明具有较好的化学稳定性。经过80个摩擦循环测试后,该涂层的WCA还维持在151°,说明具有较好的机械稳定性。电化学测试表明,该涂层可以将马口铁的腐蚀电压Ecorr从−0.538 V提高到−0.112 V,而腐蚀电流Jcorr从2.105×10−5 A下降到1.94×10−7 A,说明具有优异的防腐蚀性能。此外,将基底换成常见的铁板、水泥板、玻璃板和聚乙烯塑料板,同样获得了超疏水涂层。涂层表面的污染物可以被自由滚落的水珠轻易带走,表明涂层具有良好的自清洁性能。可见,所得SiO2-CNT/FPAEK超疏水涂层具有广阔的应用前景。

     

  • 图  1  含氟聚芳醚酮(FPAEK)的FTIR图谱

    Figure  1.  FTIR spectrum of fluorinated poly(aryl ether ketone) (FPAEK)

    图  2  不同SiO2掺杂量对SiO2-CNT/ FPAEK涂层水接触角WCA与滚动角SA的影响

    Figure  2.  Influence of the SiO2 content on the water contact angle WCA and sliding angle SA of the SiO2-CNT/FPAEK coatings

    图  3  不同CNT掺杂量对SiO2-CNT/FPAEK涂层WCASA的影响

    Figure  3.  Influence of the CNT content on the WCA and SA of the SiO2-CNT/FPAEK coatings

    图  4  水滴在SiO2-CNT/FPAEK涂层表面挤压再提升的图片

    Figure  4.  Digital image of a water droplet compacting and leaving the SiO2-CNT/FPAEK coating

    图  5  掺杂不同质量分数CNT的SiO2-CNT/FPAEK涂层的SEM图像

    Figure  5.  SEM images of the SiO2-CNT/FPAEK coatings containing different mass fractions of CNT

    图  6  FPAEK聚合物和SiO2-CNT/FPAEK涂层的TG曲线

    Figure  6.  TG curves of the FPAEK polymer and the SiO2-CNT/FPAEK coating

    图  7  FPAEK聚合物和SiO2-CNT/FPAEK涂层的DSC曲线

    Figure  7.  DSC curves of the FPAEK polymer and the SiO2-CNT/FPAEK coating

    图  8  SiO2-CNT/FPAEK涂层在三种溶液中浸泡不同时间后的WCASA

    Figure  8.  WCA and SA of the SiO2-CNT/FPAEK coating after immersing in three different solutions for different times

    图  9  不同摩擦测试周期后SiO2-CNT/FPAEK涂层的WCASA

    Figure  9.  WCA and SA of the SiO2-CNT/FPAEK coating after the friction tests for different cycles

    图  10  SiO2-CNT/FPAEK涂层的附着力测试图

    Figure  10.  Image of the SiO2-CNT/FPAEK coating after the cross-hatch tape adhesion test

    图  11  喷涂和未喷涂SiO2-CNT/FPAEK的马口铁在3.5wt%的NaCl溶液中浸泡不同时间后的极化曲线

    Figure  11.  Polarization curves of the bare and the SiO2-CNT/FPAEK coated steels after immersing in 3.5wt% NaCl solution for different time

    图  12  不同基材在喷涂SiO2-CNT/FPAEK前后的WCA

    Figure  12.  WCA of several substrates before and after coating with SiO2-CNT/FPAEK

    图  13  水泥板 (a)、铁板 (b)、铝板 (c)、玻璃板表面 (d) 喷涂与未喷涂SiO2-CNT/FPAEK的自清洁效果对比图

    Figure  13.  Comparison of self-cleaning property of the SiO2-CNT/FPAEK coated and uncoated cement plate (a), steel plate (b), aluminum plate (c) and glass plate (d)

    图  14  未喷涂 (a) 和喷涂 (b) SiO2-CNT/FPAEK的水泥板浸入泥水中再取出的照片

    Figure  14.  Digital images of the bare (a) and the SiO2-CNT/FPAEK coated (b) cement plates taking out of muddy water

    表  1  喷涂和未喷涂SiO2-CNT/FPAEK的马口铁在3.5wt%的NaCl溶液中浸泡不同时间后的电化学参数

    Table  1.   Electrochemical parameters of the bare and the SiO2-CNT/FPAEK coated steels after immersing in 3.5wt% NaCl solution for different time

    SimplesImmersion time/dayEcorr(vs.SCE)/VJcorr/(A·cm−2)
    Bare steel 1 −0.538 2.105×10−5
    SiO2-CNT/FPAEK coated 1 −0.112 1.940×10−7
    SiO2-CNT/FPAEK coated 15 −0.138 5.124×10−7
    SiO2-CNT/FPAEK coated 30 −0.121 6.591×10−6
    Notes: Ecorr—Corrosion voltage; Jcorr—Corrosion current.
    下载: 导出CSV
  • [1] DALAWAI S, ALY M A S, LATTHE S S, et al. Recent advances in durability of superhydrophobic self-cleaning technology: A critical review[J]. Pro-gress in Organic Coatings,2020,138:105381. doi: 10.1016/j.porgcoat.2019.105381
    [2] 王武, 来华, 成中军, 等. 液滴在超疏水形状记忆微阵列表面上定向/非定向滚动的可逆调控[J]. 高等学校化学学报, 2020, 41(11):2538-2544.

    WANG Wu, LAI Hua, CHENG Zhongjun, et al. Reversible regulation of droplet directional/anti-directional rolling onsuperhydrophobic shape memory microarray surface[J]. Chemical Journal of Chinese Universities,2020,41(11):2538-2544(in Chinese).
    [3] 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11):2769-2775.

    WU Zhuangzhuang, MA Guojia, CUI Xiangzhong, et al. Wettability and anti-icing performance of micro-nano structure superhydrophobic surface[J]. Acta Materiae Compositae Sinica,2020,37(11):2769-2775(in Chinese).
    [4] YUAN R X, LIU H, CHEN Y G, et al. Design ambient-curable superhydrophobic/electroactive coating toward durable pitting corrosion resistance[J]. Chemical Engineering Journal,2019,374:840-851. doi: 10.1016/j.cej.2019.05.209
    [5] ZHAO Z Q, WANG H Y, LIU Z J, et al. Durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating with uniquely weathering stability, anti-corrosion and wear-resistance[J]. Progress in Organic Coatings,2019,127:16-26. doi: 10.1016/j.porgcoat.2018.11.006
    [6] ZHANG W B, ZHU Y Z, LIU X, et al. Salt-induced fabrication of superhydrophilic and under-water superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie-International Edition,2014,53:856-860. doi: 10.1002/anie.201308183
    [7] CAO C Y, GE M Z, HUANG J Y, et al. Robust fluorine-free superhydrophobicPDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation[J]. Journal of Materials Chemistry A,2016,4:12179. doi: 10.1039/C6TA04420D
    [8] BATHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escapefrom contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [9] 赵美蓉, 周惠言, 康文倩, 等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2):361-379.

    ZHAO Meirong, ZHOU Huiyan, KAN Wenqian, et al. A comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica,2021,38(2):361-379(in Chinese).
    [10] WANG D P, ZHAO A W, LI L, et al. Bioinspired ribbed hair arrays with robust superhydrophobicity fabricated by micro/nanosphere lithography and plasma etching[J]. RSC Advances,2015,5:96404-96411. doi: 10.1039/C5RA18439H
    [11] ZHANG A Y, LIAO R J, DIXON S C, et al. Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition[J]. RSC Advances,2017,7:29275-29283. doi: 10.1039/C7RA04116K
    [12] TADANAGE K, MORINAGA J, MINAMI T, et al. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method[J]. Chemistry of Materials,2000,2:590-592.
    [13] KUMAR D, LI L, CHEN Z. Mechanically robust polyvinylidene fluoride (PVDF) based superhydrophobic coatings for self-cleaning applications[J]. Progress in Organic Coatings,2016,101:385-390. doi: 10.1016/j.porgcoat.2016.09.003
    [14] BEN W, LIANG W X, GUO Z G, et al. Biomimetic superlyophobic and superlyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chemical Society Reviews,2015,44:336-361. doi: 10.1039/C4CS00220B
    [15] PAN Y L, LIU L M, ZHANG Z J, et al. Surfaces with controllable super-wettability and applications for smart oil-water separation[J]. Chemical Engineering Journal,2019,378:122178. doi: 10.1016/j.cej.2019.122178
    [16] WANG B F, ZHANG Y K, SONG J, et al. Investigation and prediction on regulation of hydrophobicity of polymethyl methacrylate (PMMA) surface by femtosecond laser irradiation[J]. Coatings, 2020, 10(4): 386.
    [17] LIU C H, ZHANG L L, ZHANG X R, et al. Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring[J]. ACS Applied Materials & Interfaces,2020,12(36):40979-40984.
    [18] WANG X L, HU H Y, YE Q, et al. Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites[J]. Journal of Materials Chemistry,2012,22:9624-9631. doi: 10.1039/c2jm30744h
    [19] YANG Z Q, WANG L D, SUN W, et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning[J]. Applied Surface Science,2017,401:146-155. doi: 10.1016/j.apsusc.2017.01.009
    [20] LI H, ZHAO Y H, YUAN X Y. Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution[J]. Soft Matter,2013,9:1005-1009. doi: 10.1039/C2SM26689J
    [21] HONG T, JEONG S M, CHOI Y K, et al. Superhydrophobic, elastic, and conducting polyurethane-carbon nanotube-silane-aerogel composite microfiber[J]. Polymers,2020,12(8):1772.
    [22] FIHRI A, BOVERO E, AL-SHAHRANI, et al. Recent progress in superhydrophobic coatings used for steel protection: A review[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2017,520:378-390.
    [23] 梁晓蕾, 刘创华, 米欣, 等. SiO2或TiO2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能[J]. 复合材料学报, 2020, 37(8):1832-1840.

    LIANG Xiaolei, LIU Chuanghua, MI Xin, et al. Preparation and corrosion resistance of SiO2 or TiO2 nano particles/fluorinated polyacrylate polymer composite coatings[J]. Acta Materiae Compositae Sinica,2020,37(8):1832-1840(in Chinese).
    [24] 曹京宜, 张海永, 杨文静, 等. KCC-1/PVDF超疏水与超滑表面的制备及其性能研究[J]. 表面技术, 2020, 49(6): 163-169.

    CAO Jingyi, ZHANG Haiyong, YANG Wenjing, et al. Preparation and properties of KCC-1/PVDF superhydrophobic and ultra-slip surfaces[J]. Surface Technology, 2020, 49(6): 163-169(in Chinese).
    [25] WANG S L, YU X Q, ZHANG Y F. Large-scale fabrication of translucent, stretchable and durable superhydrophobic composite films[J]. Journal of Materials Chemistry A,2017,5:23489. doi: 10.1039/C7TA08203G
    [26] LI Y, CHEN S S, WU M C. All Spraying Processes for the fabrication of robust, self-healing, superhydrophobic coatings[J]. Advance Materials,2014,26:3344-3348. doi: 10.1002/adma.201306136
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  452
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 录用日期:  2021-02-05
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回