留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂碳纳米片负载Fe-Co-Pt复合材料的制备及其氧还原电活性

陈阿玲 盛况 王跃冰 章巧丽 谭广花 易清风

陈阿玲, 盛况, 王跃冰, 等. 氮掺杂碳纳米片负载Fe-Co-Pt复合材料的制备及其氧还原电活性[J]. 复合材料学报, 2022, 39(3): 1110-1119. doi: 10.13801/j.cnki.fhclxb.20210506.001
引用本文: 陈阿玲, 盛况, 王跃冰, 等. 氮掺杂碳纳米片负载Fe-Co-Pt复合材料的制备及其氧还原电活性[J]. 复合材料学报, 2022, 39(3): 1110-1119. doi: 10.13801/j.cnki.fhclxb.20210506.001
CHEN Aling, SHENG Kuang, WANG Yuebing, et al. Fabrication and oxygen reduction reaction electroactivity of Fe-Co-Pt loaded on nitrogen-doped carbon nanosheet composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1110-1119. doi: 10.13801/j.cnki.fhclxb.20210506.001
Citation: CHEN Aling, SHENG Kuang, WANG Yuebing, et al. Fabrication and oxygen reduction reaction electroactivity of Fe-Co-Pt loaded on nitrogen-doped carbon nanosheet composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1110-1119. doi: 10.13801/j.cnki.fhclxb.20210506.001

氮掺杂碳纳米片负载Fe-Co-Pt复合材料的制备及其氧还原电活性

doi: 10.13801/j.cnki.fhclxb.20210506.001
基金项目: 国家自然科学基金项目(21875062);湖南省重点领域研发计划项目(2019GK2034)
详细信息
    通讯作者:

    易清风,博士,教授,博士生导师,研究方向为电催化  E-mail:yqfyy2001@hnust.edu.cn

  • 中图分类号: TM911.4; O643.36

Fabrication and oxygen reduction reaction electroactivity of Fe-Co-Pt loaded on nitrogen-doped carbon nanosheet composites

  • 摘要: 制备高活性和高稳定性的电催化剂复合材料一直是燃料电池与金属-空气电池的重要研究内容。以双氰胺作为碳氮源,通过酞菁钴和二茂铁提供金属纳米颗粒,对其混合物进行简单的高温热解得到负载铁钴合金的氮掺杂碳纳米片(Fe1-Co1-N/C);最后利用沉积法将少量铂引入到Fe1-Co1-N/C上,得到负载铂铁钴三金属合金的氮掺杂碳纳米片(Fe1-Co1-Pt-N/C)。酸性介质中催化剂的氧还原反应(ORR)测试结果表明,Fe1-Co1-N/C本身对ORR具有较强的电活性,而2.36%~3.58%铂的加入显著提升了催化剂的电催化性能,其ORR起始电位、半波电位和极限扩散电流均可与商业Pt/C(40%)媲美,且具有优异的稳定性,可作为氧还原催化剂良好的候选材料。

     

  • 图  1  负载铂铁钴三金属合金的氮掺杂碳纳米片(Fe1-Co1-Pt-N/C)催化剂制备流程图

    Figure  1.  Schematic diagram for the synthesis of Pt-Fe-Co loaded nitrogen-doped carbon nanosheet composites (Fe1-Co1-Pt-N/C) catalysts

    图  2  Fe1-Co1-N/C (a)、Fe1-Co1-Pt-N/C 500 (b)、Fe1-Co1-Pt-N/C 550 (c)和Fe1-Co1-Pt-N/C 600 (d)催化剂的SEM图像

    Figure  2.  SEM images of the catalysts Fe1-Co1-N/C (a), Fe1-Co1-Pt-N/C 500 (b), Fe1-Co1-Pt-N/C 550 (c) and Fe1-Co1-Pt-N/C 600 (d)

    图  3  Fe1-Co1-Pt-N/C 550催化剂的TEM图像(a)和HRTEM图像((b),(c)); Fe1-Co1-Pt-N/C 550催化剂的C(d)、 N (e)、Pt (f)、Fe (g)和Co (h)元素的映射图像

    Figure  3.  TEM image (a) and HRTEM images ((b),(c)) of Fe1-Co1-Pt-N/C 550 catalysts; Mapping images of C (d), N (e), Pt (f), Fe (g) and Co (h) of Fe1-Co1-Pt-N/C 550 catalyst

    图  4  Fe1-Co1-N/C and Fe1-Co1-Pt-N/C催化剂的XRD图谱(a)和EDS能谱图(b)

    Figure  4.  XRD patterns (a) and EDS spectra (b) of the Fe1-Co1-N/C and Fe1-Co1-Pt-N/C catalysts

    图  5  Fe1-Co1-Pt-N/C 500 (a)、Fe1-Co1-Pt-N/C 550 (b)和Fe1-Co1-Pt-N/C 600(c)催化剂吸脱附曲线图以及孔体积(插图)

    Figure  5.  Nitrogen adsorption-desorption isotherms and corresponding pore size distributions (insetting) of Fe1-Co1-Pt-N/C 500 (a), Fe1-Co1-Pt-N/C 550 (b) and Fe1-Co1-Pt-N/C 600 (c)

    Vad—Volume of adsorption

    图  6  Fe1-Co1-N/C (a)和Fe1-Co1-Pt-N/C 550 (b)的XPS全谱; (c) Fe1-Co1-Pt-N/C 550的Pt4f的XPS谱; Fe1-Co1-Pt-N/C 550的Fe2p (d)、Co2p (e)、Pt4f (f)、C1s (g)和N1s (h)的XPS分谱

    Figure  6.  Full-range XPS of Fe1-Co1-N/C (a) and Fe1-Co1-Pt-N/C 550 (b); XPS of Pt4f of Fe1-Co1-Pt-N/C 550 (c); XPS spectra of Fe2p (d), Co2p (e), Pt4f (f), C1s (g) and N1s (h) in Fe1-Co1-Pt-N/C 550 catalyst

    图  7  扫描速率为50 mV·s−1时,所有催化剂分别在O2和N2饱和的0.1 mol·L−1 HClO4溶液中的CV曲线(a);催化剂Fe-Co-N/C (b)、催化剂Fe1−Co1−Pt-N/C和Pt/C (c)在0.1 mol·L−1 HClO4溶液中1600 r/min转速下的LSV曲线;(d) 催化剂Fe1−Co1−Pt-N/C 550在不同转速下的LSV曲线;(e) ORR起始电位比较;(f) ORR极限电流比较

    Figure  7.  At scanning rate of 5 mV·s−1, CV curves (a) of all catalysts in 0.1 mol·L−1 HClO4 solution saturated with O2 and N2; Comparison of LSV curves of Fe-Co-N/C catalysts (b), Fe1−Co1−Pt-N/C catalyst and catalyst Pt/C (c) at 1600 r/min in 0.1 mol·L−1 HClO4 solution; (d) LSV curves of the Fe1−Co1−Pt-N/C 550 catalyst at different rotation speed; (e) ORR onset potential comparison; (f) ORR limiting current comparison

    E—Electric potential; j—Limiting diffusion current; w—Rotate speed; n—Electron transfer number

    图  8  扫描速率为10 mV·s−1时,催化剂Fe1-Co1-N/C (a)和Fe1-Co1-Pt-N/C 550 (b)在1 600 r/min下连续120次循环测试的LSV曲线

    Figure  8.  LSV curves of the Fe1-Co1-N/C (a) and Fe1-Co1-Pt-N/C 550 (b) at 1 600 r/min and 10 mV·s−1 for 120 successive cycles

    表  1  催化剂不同元素的含量

    Table  1.   Contents of different elements in catalyst wt%

    SamplePercentage by mass/wt%
    EDS dataICP data
    CNOFeCoPt
    Fe1-Co1-N/C 58.25 39.14 0.13 2.48
    Fe1-Co2-N/C 62.24 33.04 0.2 7.23
    Fe2-Co1-N/C 56.60 37.78 0.29 5.33
    Fe3-Co1-N/C 59.61 32.92 0.24 4.52
    Fe1-Co1-Pt-N/C 500 53.69 29.63 5.48 0.33 5.31 2.36
    Fe1-Co1-Pt-N/C 550 53.52 27.30 4.90 0.71 7.14 3.58
    Fe1-Co1-Pt-N/C 600 55.24 27.88 4.72 0.55 7.73 2.69
    下载: 导出CSV
  • [1] YANG L J, SHUI J L, DU L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future[J]. Advanced Materials,2019,31(13):1804799.
    [2] JIANG Y, DENG Y P, LIANG R L, et al. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries[J]. Advanced Energy Materials,2019,9(24):1900911.1-1900911.9.
    [3] 杜昌朝, 詹霞丹, 李常荣, 等. 羟基锡酸盐载铂复合催化剂Pt/(Co, Zn)Sn(OH)6的合成及其甲醇电催化氧化性能[J]. 复合材料学报, 2018, 35(1):173-179.

    DU Changming, ZHAN Xiadan, LI Changrong, et al. Synthesis of Pt/(Co, Zn)Sn(OH)6 composite catalyst supported by hydroxystannate and its performance for electrocataly-tic oxidation of methanol is simple[J]. Acta Materiae Compositae Sinica,2018,35(1):173-179(in Chinese).
    [4] 施再发, 杨少彬, 刘景东, 等. 化学沉淀法制备S-FeS/介孔碳复合材料及其电化学性能[J]. 复合材料学报, 2015, 32(2):341-346.

    SHI Zaifa, YANG Shaobin, LIU Jingdong, et al. Preparation and electrochemical properties of S-FeS/ mesoporous carbon composites by chemical precipitation method[J]. Acta Materiae Compositae Sinica,2015,32(2):341-346(in Chinese).
    [5] MAHATA A, NAIR A S, PATHAK B. Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction[J]. Catalysis Science & Technology,2019,9:1-78.
    [6] XIN H Y, ZHANG W B, XIAO X X, et al. Selective hydrogenation of cinnamaldehyde with NixFe1−xAl2O4+ δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios[J]. Journal of Catalysis,2020,393:126-139.
    [7] SHI H, XIA M, JIA L T, et al. First-principles study on the adsorption and diffusion properties of non-noble (Fe, Co, Ni and Cu) and noble (Ru, Rh, Pt and Pd) metal single atom on graphyne[J]. Chemical Physics,2020,536:110783. doi: 10.1016/j.chemphys.2020.110783
    [8] LIANG J R, LI Y S, WANG R, et al. Cross-dimensional model of the oxygen transport behavior in low-Pt Proton exchange membrane fuel Cells[J]. Chemical Engineering Journal,2020,400:125796. doi: 10.1016/j.cej.2020.125796
    [9] WANG Y Y, LI Z G, ZHANG P, et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reductions and evolution reactions in wearable zinc-air batteries[J]. Nano Energy,2021,87:106147. doi: 10.1016/j.nanoen.2021.106147
    [10] NOORI M T, VERMA N. Cobalt-Iron phthalocyanine supported on carbide-derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells[J]. Electrochimica Acta,2018,298:70-79.
    [11] MA J H, SHI M H, YAO Z Z, et al. Hierarchically porous iron and nitrogen Co-doped carbon composite with enhanced ORR performance[J]. Journal of Solid State Chemistry,2019,276:139-145. doi: 10.1016/j.jssc.2019.04.033
    [12] PATIL S, SATILMIS B, UYAR T, et al. Metal-free N doped ultrafine carbon fibers from electrospun polymers of intrinsic microporosity (PIM-1) based fibers for oxygen reduction reaction[J]. Journal of Power Sources,2020,451(1):227799.
    [13] CUI X Z, MENG L, ZHANG X H, et al. Heterogeneous atoms-doped titanium carbide as a precious metal-free electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta,2018,295:384-392.
    [14] LYU D D, YAO S X, BAHARI Y, et al. In situ molecular-level synthesis of N, S, Co-doped carbon as efficient metal-free oxygen redox electrocatalysts for rechargeable Zn–air bat-teries[J]. Applied Materials Today,2020,20:100737. doi: 10.1016/j.apmt.2020.100737
    [15] CHEN Y G, WANG J, MENG X B, et al. Pt-SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): effects of crystalline and amorphous SnO2 by atomic layer deposition[J]. Journal of Power Sources,2013,238:144-149.
    [16] LI G, YI Q F, YANG X K, et al. Ni3Co1N doped honeycomb carbon composites are the suitable cathodic catalysts of membrane-less direct alcohol fuel cell[J]. Carbon,2018,140:557-568. doi: 10.1016/j.carbon.2018.08.037
    [17] YU L, YI Q F, YANG X K, et al. An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries[J]. Science China Materials,2019,9:1251-1264.
    [18] WANG L Q, LIANG K X, DENG L, et al. Protein hydrogel networks: a unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions[J]. Applied Catalysis B: Environmental,2019,246:89-99. doi: 10.1016/j.apcatb.2019.01.050
    [19] WANG Y, PAN Y, ZHU L K, et al. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheet for ORR and HER[J]. Carbon,2019,146:671-679. doi: 10.1016/j.carbon.2019.02.002
    [20] LIU Y, LI Z S, XU S H, et al. Synthesis of Pt-Ni (trace)/GNs composite and its bi-functional electrocatalytic properties for MOR and ORR[J]. Journal of Colloid and Interface Science,2019,554:640-649. doi: 10.1016/j.jcis.2019.07.052
    [21] YU L, YI Q F, LI G, et al. FeCo-doped hollow bamboo-like C-N composites as cathodic catalysts for zinc-air battery in neutral edia[J]. Journal of The Electrochemical Society,2018,165(11):2502-2509. doi: 10.1149/2.0481811jes
    [22] ZHU Y F, WANG S H, LUO Q Y, et al. Facile synthesis of structurally ordered low-Pt-loading Pd-Pt-Fe nanoalloys with enhanced electrocatalytic performance for oxygen reduction reaction[J]. Journal of Alloys and Compounds,2021,855:157322. doi: 10.1016/j.jallcom.2020.157322
    [23] FU Y, YU H Y, CONG J, et al. NiCo alloy nanoparticles deco-rated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst[J]. Advanced Functional Materials,2018,28(9):1705094. doi: 10.1002/adfm.201705094
    [24] ZHAO Y G, Li L, LIU D K, et al. Sponge tofu-like graphene-carbon hybrid supporting Pt–Co nanocrystals for efficient oxygen reduction reaction and Zn-air battery[J]. International Journal of Hydrogen Energy,2021,46(29):15561-15571. doi: 10.1016/j.ijhydene.2021.02.126
    [25] HE C M, MA Z L, WU Q, et al. Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation[J]. Electrochimica Acta,2019,330:135119.
    [26] WU Y J, ZHAO Y G, LIU J J, et al. Adding refractory 5d transition metal W into PtCo system: an advanced ternary alloy for efficient oxygen reduction reaction [J]. Journal of Materials Chemistry, 2010, 6(23): 10700-10709.
    [27] GAO P, CAI Y Z, WANG F H, et al. Pt-based trimetallic nanocrystals with high proportions of M (M=Fe, Ni) metals for catalyzing oxygen reduction reaction[J]. International Journal of Hydrogen Energy,2020,45(32):16039-16048. doi: 10.1016/j.ijhydene.2020.03.152
    [28] SHENG K, YI Q F, HOU L F, et al. Metal-free graphene modified nitrogen-doped ultra-thin hollow carbon spheres as superior cathodic catalysts of Zn-air battery[J]. Journal of the Electrochemical Society,2020,167(7):1-30.
    [29] DETTLAFF A D, SAWCZAK M, KLUGMANN-RADZIEMSKA E. High-performance method of carbon nanotubes modification by microwave plasma for thin composite films preparation [J]. RSC Advances, 2017, 7(51): 31940-31949.
    [30] 米娟, 李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014, 38(7):1394-1398. doi: 10.3969/j.issn.1002-087X.2014.07.064

    MI Juan, LI Wencui. Calculation of specific capacitance of supercapacitor under different test techniques[J]. Power Supply Technology,2014,38(7):1394-1398(in Chinese). doi: 10.3969/j.issn.1002-087X.2014.07.064
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1090
  • HTML全文浏览量:  468
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-04-18
  • 录用日期:  2021-04-21
  • 网络出版日期:  2021-05-06
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回