留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钨铜梯度材料热震过程中显微组织及热性能

徐仙 陈鹏起 台运霄 魏邦争 卫陈龙 程继贵

徐仙, 陈鹏起, 台运霄, 等. 钨铜梯度材料热震过程中显微组织及热性能[J]. 复合材料学报, 2021, 38(12): 4205-4211. doi: 10.13801/j.cnki.fhclxb.20210215.004
引用本文: 徐仙, 陈鹏起, 台运霄, 等. 钨铜梯度材料热震过程中显微组织及热性能[J]. 复合材料学报, 2021, 38(12): 4205-4211. doi: 10.13801/j.cnki.fhclxb.20210215.004
XU Xian, CHEN Pengqi, TAI Yunxiao, et al. Microstructure and thermal properties of W-Cu graded materials during thermal shock test[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4205-4211. doi: 10.13801/j.cnki.fhclxb.20210215.004
Citation: XU Xian, CHEN Pengqi, TAI Yunxiao, et al. Microstructure and thermal properties of W-Cu graded materials during thermal shock test[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4205-4211. doi: 10.13801/j.cnki.fhclxb.20210215.004

钨铜梯度材料热震过程中显微组织及热性能

doi: 10.13801/j.cnki.fhclxb.20210215.004
基金项目: 国家自然科学基金(51674095;52004079);国家重点研发计划(2018YFC1901704)
详细信息
    通讯作者:

    程继贵,博士,教授,博士生导师,研究方向为粉末冶金及粉体材料  E-mail:jgcheng@hfut.edu.cn

  • 中图分类号: TB331;TL63

Microstructure and thermal properties of W-Cu graded materials during thermal shock test

  • 摘要: 针对目前W-Cu功能梯度材料(FGM)在长期热震循环过程中的稳定性缺乏相应研究的问题,以化学镀W-10wt%Cu复合粉体和Cu粉为原料,通过叠层压制和常压气氛烧结的工艺制备了W-10wt%Cu/W-20wt%Cu/W-30wt%Cu层状梯度材料。在600℃、800℃、1000℃温度下进行热震试验,对试样在不同热震温度、热震次数下的显微组织和热学性能变化进行了研究。试验结果表明,随着热震温度升高,渗出至试样各梯度层表面的Cu逐渐增加。当热震温度达到1000℃时,试样各梯度层表面出现大量Cu聚集成片的现象,同时在W-20wt%Cu/W-30wt%Cu界面处发现了界面裂纹。随着热震次数的提高,在W-10Cu层中,Cu逐渐渗出表面并在内部留下微孔。此外,W-Cu FGM的热导率随热震次数的增加而减小,在1000℃经过200次热震后,室温热导率由200.54 W·(m·K)−1降至159.23 W·(m·K)−1,降低了20.60%。该结果揭示了热震循环中裂纹形成与显微组织变化的耦合失效机制,明确了W-Cu FGM安全服役的范围。

     

  • 图  1  粉体的SEM图像

    Figure  1.  SEM images of the powder ((a) W powder; (b) W-10wt%Cu powder)

    图  2  W-Cu功能梯度材料(FGM)各梯度层表面的XRD图谱

    Figure  2.  XRD patterns of different layers of W-Cu functionally graded materials (FGM)

    图  3  W-Cu FGM不同区域的SEM图像

    Figure  3.  SEM images in different regions of the W-Cu FGM ((a) W-10wt%Cu; (b) W-20wt%Cu; (c) W-30wt%Cu)

    图  4  W-Cu FGM在不同热震温度下经过200次热震后SEM图像

    Figure  4.  SEM images of W-Cu FGM at different thermal shock temperatures for 200 times((a)-(c) 600℃ from W-10wt%Cu to W-30wt%Cu; (d)-(f) 800℃ from W-10wt%Cu to W-30wt%Cu; (g)- (i) 1000℃ from W-10wt%Cu to W-30wt%Cu)

    图  5  W-Cu FGM在600℃热震200次后的EDS面扫描图

    Figure  5.  EDS mapping of W-Cu FGM after thermal shocks at 600℃ for 200 times ((a) SEM image; (b) EDS mapping; (c) W; (d) Cu)

    图  6  W-Cu FGM在1000℃热震200次后的SEM图像

    Figure  6.  SEM images of W-Cu FGM after thermal shocks at 1000℃ for 200 times((a) Interface of W-10wt%Cu/W-20wt%Cu; (b) Interface of W-20wt%Cu/W-30wt%Cu)

    图  7  1000℃不同热震次数下W-10wt%Cu层截面图像

    Figure  7.  Cross section images of W-10wt%Cu layer at 1000℃ after different thermal shock times((a) 0 time; (b) 50 times; (c) 100 times; (d) 150 times; (e) 200 times)

    图  8  不同热震次数下W-Cu FGM试样的热导率

    Figure  8.  Thermal conductivity of W-Cu FGM samples after different thermal shock times

  • [1] MEROLA M, ESCOURBIAC F, RAFFRAY R, et al. Overview and status of ITER internal components[J]. Fusion Engineering and Design,2014,89(7-8):890-895. doi: 10.1016/j.fusengdes.2014.01.055
    [2] SHIMOMURA Y. ITER and plasma surface interaction issues in a fusion reactor[J]. Journal of Nuclear Materials,2007,363-365:467-475. doi: 10.1016/j.jnucmat.2007.01.215
    [3] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2):171-180. doi: 10.11900/0412.1961.2018.00404

    WU Yucheng. The routes and mechanism of plasma facing tungstenmaterials to improve ductility[J]. Acta Metallurgica Sinica,2019,55(2):171-180(in Chinese). doi: 10.11900/0412.1961.2018.00404
    [4] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8):939-950. doi: 10.11900/0412.1961.2018.00405

    WU Yucheng. Research progress in irradiation damage behavior of tungsten and its alloys for nuclear fusion reactor[J]. Acta Metallurgica Sinica,2019,55(8):939-950(in Chinese). doi: 10.11900/0412.1961.2018.00405
    [5] 沈晓, 程继贵, 李剑峰, 等. 轧膜成形制备W-Cu层状功能梯度材料及其性能研究[J]. 粉末冶金工业, 2016, 26(6):8-14.

    SHEN Xiao, CHENG Jigui, LI Jianfeng, et al. Fabrication and properties of W-Cu functionally graded materials by tapecalendaring method[J]. Powder Metallurgy Industry,2016,26(6):8-14(in Chinese).
    [6] 雷纯鹏, 程继贵, 夏永红. 新型钨铜复合材料的制备和性能研究的新进展[J]. 金属功能材料, 2003, 10(4):24-27. doi: 10.3969/j.issn.1005-8192.2003.04.007

    LEI Chunpeng, CHENG Jigui, XIA Yonghong. The latest developments in preparation and property study of W-Cu composites[J]. Metallic Functional Materials,2003,10(4):24-27(in Chinese). doi: 10.3969/j.issn.1005-8192.2003.04.007
    [7] 种法力, 周张建, 陈俊凌, 等. 核聚变钨铜面对等离子体材料研究[J]. 功能材料, 2018, 49(3):3109-3112.

    CHONG Fali, ZHOU Zhangjian, CHEN Junling, et al. W/Cu plasma facing component for fusion device[J]. Journal of Functional Materials,2018,49(3):3109-3112(in Chinese).
    [8] CHAPA J, REIMANIS I. Modeling of thermal stresses in a graded Cu/W joint[J]. Journal of Nuclear Materials,2002,303(2):131-136.
    [9] LIU X, YANG L, TAMURA S, et al. Thermal response of plasma sprayed tungsten coating to high heat flux[J]. Fusion Engineering and Design,2004,70(4):341-349. doi: 10.1016/j.fusengdes.2004.06.002
    [10] RICCARDI B, MONTANARI R, CASADEI M, et al. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates[J]. Journal of Nuclear Materials,2006,352(1-3):29-35. doi: 10.1016/j.jnucmat.2006.02.069
    [11] TEJADO E, MÜLLER A V, YOU J H, et al. The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content[J]. Journal of Nuclear Materials,2018,498:468-475. doi: 10.1016/j.jnucmat.2017.08.020
    [12] YOU J H, BOLT H. Analytical method for thermal stress analysis of plasma facing materials[J]. Journal of Nuclear Materials,2001,299(1):9-19. doi: 10.1016/S0022-3115(01)00674-2
    [13] RICHOU M, GALLAY F, BSWIRTH B, et al. Performance assessment of thick W/Cu graded interlayer for DEMO divertor target[J]. Fusion Engineering and Design,2020,157:1-6.
    [14] LOEWENHOFF T, LINKE J, PINTSUK G, et al. Tungsten and CFC degradation under combined high cycle transient and steady state heat loads[J]. Fusion Engineering and Design,2012,87(7-8):1201-1205. doi: 10.1016/j.fusengdes.2012.02.106
    [15] 吴玉程, 姚刚, 罗来马, 等. 核聚变堆用钨及钨基材料热负荷损伤行为的研究进展[J]. 中国有色金属学报, 2018, 28(4):719-731.

    WU Yucheng, YAO Gang, LUO Laima, et al. Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor[J]. The Chinese Journal of Nonferrous Metals,2018,28(4):719-731(in Chinese).
    [16] 汪峰涛, 吴玉程, 王涂根, 等. W-Cu面对等离子体梯度热沉材料的制备和性能[J]. 复合材料学报, 2008, 25(2):25-30. doi: 10.3321/j.issn:1000-3851.2008.02.005

    WANG Fengtao, WU Yucheng, WANG Tugen, et al. Fabrication and properties of the W-Cu gradient heat sink materials for plasma facing materials[J]. Acta Materiae Compo-sitae Sinica,2008,25(2):25-30(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.005
    [17] 陶光勇, 郑子樵, 刘孙和. W/Cu功能梯度材料的制备及热循环应力分析[J]. 复合材料学报, 2006, 23(4):72-77. doi: 10.3321/j.issn:1000-3851.2006.04.013

    TAO Guangyong, ZHENG Ziqiao, LIU Sunhe. Fabrication of W/Cu functionally graded material and analysis of thermal cycle stress[J]. Acta Materiae Compositae Sinica,2006,23(4):72-77(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.013
    [18] ZHOU Z J, SONG S X, DU J, et al. Performance of W/Cu FGM based plasma facing components under high heat load test[J]. Journal of Nuclear Materials,2007,363-365:1309-1314. doi: 10.1016/j.jnucmat.2007.01.184
    [19] WANG B G, ZHU D H, LI C J, et al. Performance of full compositional W/Cu functionally gradient materials under quasi-steady-stateheat loads[J]. IEEE Transactions on Plasma Science,2018,46(5):1551-1555. doi: 10.1109/TPS.2018.2803898
    [20] CHEN W C, CHEN P Q, LI J F, et al. Functionally graded W-Cu materials prepared from Cu-coated W powders by microwave sintering[J]. Journal of Materials Engineering and Performance,2019,28(10):6135-6144. doi: 10.1007/s11665-019-04321-7
    [21] WANG Y L, LIANG S H, XIAO P, et al. Experimental and simulation analysis of thermal shock with rapid heating followed by water quenching for CuW70 alloys[J]. Rare Metal Materials and Engineering,2012,41(3):393-396. doi: 10.1016/S1875-5372(12)60034-4
    [22] WANG Y L, LIANG S H, REN J T. Analysis of meso-scale damage and crack for CuW alloys induced by thermal shock[J]. Materials Science and Engineering: A,2012,534:542-546. doi: 10.1016/j.msea.2011.12.005
    [23] CHAWLA K K. Grain boundary cavitation and sliding in copper/tungsten composites due to thermal stresses[J]. Philosophical Magazine,1973,28(2):401-413. doi: 10.1080/14786437308217462
    [24] 陈平安. Cu-W体系复合材料的热压烧结、结构调控与性能增强[D]. 武汉: 武汉理工大学, 2014.

    CHEN Ping’an. Hot-press sintering, structure regulation and properties improvement of Cu-W system composites[D]. Wuhan: Wuhan University of Technology, 2014(in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  873
  • HTML全文浏览量:  376
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 录用日期:  2021-02-05
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回