留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-8-SiO2的制备及其对U(VI)的吸附

樊元睿 张炜 陈元涛 覃建娴

樊元睿, 张炜, 陈元涛, 等. ZIF-8-SiO2的制备及其对U(VI)的吸附[J]. 复合材料学报, 2021, 38(9): 3064-3072. doi: 10.13801/j.cnki.fhclxb.20201207.001
引用本文: 樊元睿, 张炜, 陈元涛, 等. ZIF-8-SiO2的制备及其对U(VI)的吸附[J]. 复合材料学报, 2021, 38(9): 3064-3072. doi: 10.13801/j.cnki.fhclxb.20201207.001
FAN Yuanrui, ZHANG Wei, CHEN Yuantao, et al. ZIF-8-SiO2 and adsorption on U(VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3064-3072. doi: 10.13801/j.cnki.fhclxb.20201207.001
Citation: FAN Yuanrui, ZHANG Wei, CHEN Yuantao, et al. ZIF-8-SiO2 and adsorption on U(VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3064-3072. doi: 10.13801/j.cnki.fhclxb.20201207.001

ZIF-8-SiO2的制备及其对U(VI)的吸附

doi: 10.13801/j.cnki.fhclxb.20201207.001
基金项目: 国家自然科学基金 (21667024)
详细信息
    通讯作者:

    陈元涛,博士,教授,博士生导师,研究方向为盐湖自然资源循环与利用研究 E-mail:chenyt@qhnu.edu.cn

  • 中图分类号: O643.19

ZIF-8-SiO2 and adsorption on U(VI)

  • 摘要: 以沸石咪唑酯骨架结构材料ZIF-8及硅酸四乙酯(TEOS)为原料制备ZIF-8-SiO2复合材料,并采用XRD、SEM、EDS等方法对ZIF-8-SiO2的结构及吸附U(VI)前后的形貌进行表征,结果表明ZIF-8-SiO2成功制备且对U(VI)具有良好的吸附作用。以静态吸附实验,分别考察了pH值、时间、温度、溶液初始铀浓度、盐浓度及超高压环境等对ZIF-8-SiO2吸附性能的影响。由实验结果可得,在初始浓度为80 mg·L−1时,25℃下ZIF-8-SiO2对U(VI)的最大实际吸附量为498 mg·g−1,根据Langmuir模型拟合结果分析得出,ZIF-8-SiO2对U(VI)的理论吸附量最高可达678.5 mg·g−1,且在200~500 MPa范围内,压强越高越有利于吸附。通过FTIR、XPS等方法对ZIF-8-SiO2吸附铀酰离子前后的结构进行分析,探究该吸附过程中可能存在的吸附机制。

     

  • 图  1  ZIF-8、ZIF-8-SiO2 (a),SiO2 (b)的XRD图谱

    Figure  1.  XRD patterns of ZIF-8, ZIF-8-SiO2 (a) and SiO2 (b)

    图  2  ZIF-8-SiO2吸附U(VI)前后的SEM图像

    Figure  2.  SEM images of before and after U(VI) adsorption of the ZIF-8-SiO2 ((a) Before; (b) After)

    图  3  ZIF-8-SiO2吸附U(VI)后的Mapping图像及EDS图谱

    Figure  3.  Mapping images and EDS patterns of ZIF-8-SiO2 after U(VI) adsorption

    图  4  溶液初始pH值对ZIF-8-SiO2吸附U(VI)的影响曲线

    Figure  4.  Influence curve of initial pH of solution on adsorption U(VI) of ZIF-8-SiO2

    图  5  不同pH值水溶液中U(VI)的形态

    Figure  5.  Form of U(VI) in different pH aqueous solution (%)

    图  6  ZIF-8-SiO2对U(VI)吸附的等温吸附模型图

    Figure  6.  Isothermal adsorption model of U(VI) on ZIF-8-SiO2

    图  7  ZIF-8-SiO2对U(VI)吸附的动力学模型图

    Figure  7.  Kinetic model of U(VI) adsorption by ZIF-8-SiO2

    图  8  反应温度对ZIF-8-SiO2吸附U(VI)的影响

    Figure  8.  Effect of temperature on the U(VI) adsorption by ZIF-8-SiO2

    图  9  盐浓度对ZIF-8-SiO2吸附U(VI)能力的影响

    Figure  9.  Effects of different salt concentrations on U(VI) adsorption capacity of ZIF-8-SiO2

    图  10  压强对ZIF-8-SiO2吸附U(VI) 能力的影响

    Figure  10.  Effect of pressure on the adsorption capacity of U(VI) by ZIF-8-SiO2

    图  11  ZIF-8-SiO2吸附U(VI)前后的FTIR图谱

    Figure  11.  FTIR spectra of the sample before and after ZIF-8-SiO2 adsorbing U(VI) ((a) ZIF-8; (b) ZIF-8-SiO2; (c) ZIF-8-SiO2)

    图  12  吸附U(VI)前后ZIF-8-SiO2的XPS全谱和U4f、O1s图谱

    Figure  12.  Survy and U4f and O1 XPS spectra of ZIF-8-SiO2 before and after U(VI) adsorption ((a) Survy spectra; (b) U4f spectra after U(VI) adsorption; (c) O1 spectra)

    表  1  25℃下 ZIF-8-SiO2对U(VI)吸附的Langmuir及Freundlich模型拟合参数

    Table  1.   Langmuir and Freundlich model parameters for adsorption of U(VI) by ZIF-8-SiO2 at 25℃

    SampleparametersZIF-8-SiO2
    LangmuirCs,max/(mg·g−1)678.5
    b/(L·mg−1)0.01232
    R20.9889
    FreundlichKF/(mg·g−1)20.63
    1/n0.6267
    R20.9700
    Notes: Cs,max—Maximum adsorption capacity of ZIF-8-SiO2 for U(VI); b—Fitting parameters of Langmuir adsorption model; KF—Fitting parameters of Freundlich adsorption model; n—Linear factor or a potential energy nonuniformity factor, reflecting the heterogeneous energy of the adsorption surface; R2—Coefficient of association.
    下载: 导出CSV

    表  2  ZIF-8-SiO2对U(VI)吸附动力学拟合相关参数

    Table  2.   Pseudo-first and pseudo second order kinetics parameters for U(VI) removal by ZIF-8-SiO2

    Parameter25℃45℃
    Pseudo-first order K1/(L·mg−1) 0.01039 0.03427
    R2 0.9849 0.8681
    Pseudo-second order K2/(g·min−1·mg−1) 5.847×10−5 2.311×10−4
    R2 0.9954 0.9519
    Notes: K1, K2—Adsorption rate constant; R2—Coefficient of association.
    下载: 导出CSV

    表  3  ZIF-8-SiO2对U(VI)吸附的热力学参数

    Table  3.   Thermodynamic parameters of adsorption of ZIF-8-SiO2 on U(VI)

    ZIF-8-SiO2
    ΔH/(kJ·mol−1) 68.33
    ΔS/(J·mol−1·K−1) 242.9
    ΔG/(kJ·mol−1),298.15 K −4.088
    ΔG/(kJ·mol−1),308.15 K −6.517
    ΔG/(kJ·mol−1),318.15 K −8.946
    Ea/(kJ·mol−1) 54.19
    Notes: ΔH—Standard enthalpy change; ΔS—Standard entropy change; ΔG—Gibbs free energy change; Ea—Activation energy of adsorption.
    下载: 导出CSV
  • [1] LINDNER H, SCHNEIDER E. Review of cost estimates for uranium recovery from seawater[J]. Energy Economics,2015,49:9-22. doi: 10.1016/j.eneco.2015.01.016
    [2] 王国华, 杨思芹, 周耀辉, 等. 生物还原法修复铀污染地下水的研究进展[J]. 环境科学与技术, 2019, 42(8):47-53.

    WANG G H, YANG S Q, ZHOU Y H, et al. Research progress on the bioremediation of groundwater polluted by uranium via bio-reduction[J]. Environmental Science & Technology,2019,42(8):47-53(in Chinese).
    [3] 敖浚轩, 徐晓, 李玉娜, 等. 海水提铀研究进展[J]. 辐射研究与辐射工艺学报, 2019, 37(2):3-28.

    AO J X, XU X, LI Y N, et al. Research progress in uranium extraction from seawater[J]. Journal of Radiation Research and Radiation Processing,2019,37(2):3-28(in Chinese).
    [4] WOJCIECHOWSKI A. The U-232 in thorium cycle[J]. Progress in Nuclear Energy,2018,106:204-214. doi: 10.1016/j.pnucene.2018.03.011
    [5] 王双, 冉永红, 李娟, 等. 铀的生殖毒性效应及作用机制研究进展[J]. 局解手术学杂志, 2019, 28(1):86-90.

    WANG S, RAN Y H, LI J, et al. Advances in reproductive toxicity of uranium and its mechanism[J]. Journal of Regional Anatomy and Operative Surgery,2019,28(1):86-90(in Chinese).
    [6] CAO H, CHEN J, ZHANG J, et al. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China[J]. Journal of Environmental Sciences-china,2010,22(11):1792-1799. doi: 10.1016/S1001-0742(09)60321-1
    [7] HARIBALA, HU B, WANG C, et al. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China[J]. Ecotoxicology and Environmental Safety,2016,130:185-192. doi: 10.1016/j.ecoenv.2016.04.002
    [8] 魏广芝, 徐乐昌. 低浓度含铀废水的处理技术及其研究进展[J]. 铀矿冶, 2007, 26(2):90-95. doi: 10.3969/j.issn.1000-8063.2007.02.007

    WEI G Z, XU L C. Treatment technology of low concentration uranium-bearing wastewater and its research progress[J]. Uranium Mining and Metallurgy,2007,26(2):90-95(in Chinese). doi: 10.3969/j.issn.1000-8063.2007.02.007
    [9] FENG M L, SARMA D, QI X H, et al. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate[J]. Journal of the American Chemical Society,2016,138(38):12578-12585. doi: 10.1021/jacs.6b07351
    [10] WANG Y S, CHEN Y T, LIU C, et al. Preparation of porous magnesium oxide foam and study on its enrichment of uranium[J]. Journal of Nuclear Materials,2018,504:166-175. doi: 10.1016/j.jnucmat.2018.03.041
    [11] 宋莉芳, 夏慧芸, 陈华鑫, 等. 中孔金属有机骨架材料的制备与应用[J]. 化学进展, 2014, 26(7):1131-1142.

    SONG L F, XIA H Y, CHEN H X, et al. Preparation and application of mesoporous metal-organic frameworks[J]. Progress in chemistry,2014,26(7):1131-1142(in Chinese).
    [12] WANG C, LIU X, KESER DEMIR N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews,2016,45(18):5107-5134. doi: 10.1039/C6CS00362A
    [13] WU Y H, PANG H W, YAO W, et al. Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(VI): batch experiments and spectroscopy study[J]. Science Bulletin,2018,63(13):831-839. doi: 10.1016/j.scib.2018.05.021
    [14] ZHANG Y, CHEN R, LIU Q, et al. Polypyrrole modified FeO-loaded graphene oxide for enrichment of uranium(VI) from simulated seawater[J]. Dalton Transactions,2018,47:12984-12992. doi: 10.1039/C8DT02819B
    [15] LIU F T, SONG S S, CHENG G, et al. MIL-101(Cr) metal-organic framework functionalized with tetraethylenepentamine for potential removal of Uranium (VI) from waste water[J]. Adsorption Science and Technology,2018,36(7-8):1550-1567. doi: 10.1177/0263617418789516
    [16] 张晋维, 李平, 张馨凝, 等. 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020, 78(7):597-612. doi: 10.6023/A20050153

    ZHANG J W, LI P, ZHANG X N, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta chimca sinica,2020,78(7):597-612(in Chinese). doi: 10.6023/A20050153
    [17] 张蕾蕾, 唐安琪, 王章慧, 等. 以ZIF-8为模板制备聚多巴胺/聚乙二醇复合纳米胶囊[J]. 功能高分子学报, 2018, 31(6):546-552.

    ZHANG L L, TANG A Q, WANG Z H, et al. Preparation of polydopamine/poly (ethylene glycol) composite nanocapsules with ZIF-8 nanoparticles as templates[J]. Journal of Functional Polymers,2018,31(6):546-552(in Chinese).
    [18] XU X, WANG X, LIU M, et al. ZIF/SiO2 core-shell microsphere extraction coupled with LC–MS/MS for the quantita-tive analysis of four plant growth regulators in navel oranges[J]. Journal of Separation Science,2018,41(18). doi: 10.1002/jssc.201800286
    [19] HAMEED B H, TAN I A W, AHMAD A L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon[J]. Chemical Engineering Journal,2008,144(2):235-244. doi: 10.1016/j.cej.2008.01.028
    [20] WU C, LIU Q, CHEN R, et al. Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance[J]. ACS Appllied Mater Interfaces,2017,9(12):11106-11115. doi: 10.1021/acsami.6b16848
    [21] 王彦惠, 成建峰, 赵玉婷, 等. Fe3O4/SiO2-NH2磁性复合纳米材料对铀(VI)的吸附性能[J]. 环境化学, 2019, 38(9):2149-2158. doi: 10.7524/j.issn.0254-6108.2019011003

    WANG Y H, CHENG J F, ZHAO Y T, et al. Adsorption of Fe3O4@SiO2-NH2 magnetic composite nanomaterials on Uranium (VI)[J]. Environmental Chemistry,2019,38(9):2149-2158(in Chinese). doi: 10.7524/j.issn.0254-6108.2019011003
    [22] LIU R, ZHANG W, CHEN Y T, et al. Uranium (VI) adsorption by copper and copper/iron bimetallic central MOFs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,587:124334. doi: 10.1016/j.colsurfa.2019.124334
    [23] 许成, 张炜, 陈元涛, 等. UiO-66/UiO-66-PYDC的制备及其对UO22+吸附性研究[J]. 环境科学学报, 2018, 38(11):4350-4359.

    XU C, ZHANG W, CHEN Y T, et al. Preparation of UiO-66/UiO-66-PYDC and their absorptive properties on uranyl ions[J]. Acta Scientiae Circumstantiae,2018,38(11):4350-4359(in Chinese).
    [24] 王芳, 张辉, 戴仲然, 等. 磁性核壳CoFe2O4@SiO2@PIL-AO复合材料的制备及其吸附U(VI)性能研究[J]. 环境科学学报, 2018, 38(9):3605-3613.

    WANG F, ZHANG H, DAI Z R, et al. Preparation of magnetic yolk/shell CoFe2O4@SiO2@PIL-AO composite material and its adsorption behavior for U(VI)[J]. Acta Scientiae Circumstantiae,2018,38(9):3605-3613(in Chinese).
    [25] 林晨曦, 冯洋, 李晴, 等. 动力学、热力学和活化能在花生壳吸附铅离子实验中的应用[J]. 化学教育, 2020, 41(8):53-57.

    LIN C X, FENG Y, LI Q, et al. Application of kinetics, therodynamics and activation energy in adsorption of Pb2+ by peanut shell[J]. Chinese Journal of Chemical Education,2020,41(8):53-57(in Chinese).
    [26] 宋艳晖, 钱春园, 张托弟, 等. 三维凹凸棒石-氧化石墨烯的制备及其吸附性能[J]. 非金属矿, 2020, 43(2):9-12. doi: 10.3969/j.issn.1000-8098.2020.02.003

    SONG Y H, QIAN C Y, ZHANG T D, et al. Preparation and adsorption properties of 3D attapulgite-graphene oxide[J]. Non-Metallic Mines,2020,43(2):9-12(in Chinese). doi: 10.3969/j.issn.1000-8098.2020.02.003
    [27] KUMAR K S, DAHMS H, WON E, et al. Microalgae-A promising tool for heavy metal remediation[J]. Ecotoxicology and Environmental Safety,2015:329-352.
    [28] ZHU L, SUN Y L, SONG L J, et al. Dihydroxy bezladely derivatives functionalized mesoporous silica SBA-15 for the sorption of U(VI)[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,310:125-137. doi: 10.1007/s10967-016-4779-4
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  584
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-11-30
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回