留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于套管屈曲约束的拉挤型GFRP管轴压性能

李峰 李达 朱锐杰

李峰, 李达, 朱锐杰. 基于套管屈曲约束的拉挤型GFRP管轴压性能[J]. 复合材料学报, 2021, 38(10): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20201222.002
引用本文: 李峰, 李达, 朱锐杰. 基于套管屈曲约束的拉挤型GFRP管轴压性能[J]. 复合材料学报, 2021, 38(10): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20201222.002
LI Feng, LI Da, ZHU Ruijie. Axial compression performance of pultruded GFRP tube based on casing buckling restraint[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20201222.002
Citation: LI Feng, LI Da, ZHU Ruijie. Axial compression performance of pultruded GFRP tube based on casing buckling restraint[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20201222.002

基于套管屈曲约束的拉挤型GFRP管轴压性能

doi: 10.13801/j.cnki.fhclxb.20201222.002
基金项目: 国家自然科学基金(51778620);国家重点研发计划项目(2017YFC0703008);陆军工程大学基础前沿科技创新项目(2019-33)
详细信息
    通讯作者:

    李峰,博士生导师,副教授,研究方向为复合材料结构与力学  E-mail:83812546@qq.com

  • 中图分类号: TB332

Axial compression performance of pultruded GFRP tube based on casing buckling restraint

  • 摘要: 为解决复合材料空间桁架结构部分关键压杆失稳引发的连续性倒塌问题,提出了一种由不锈钢套管及螺栓连接系组成的玻璃纤维增强树脂复合材料(GFRP)管整体失稳套管屈曲约束装置。为分析该套管屈曲约束装置对拉挤型GFRP管轴压性能的影响,对3个GFRP管试件和4个套管屈曲约束GFRP管试件进行了轴压试验,观察了试件的受力过程和破坏形态,获得了荷载-位移曲线和荷载-应变曲线,对比研究了两者的极限承载力和破坏模式,同时利用有限元模型分析了不同内核长细比、内核与套管间隙及套管壁厚对GFRP管轴压性能的影响。结果表明:该套管屈曲约束装置能有效约束GFRP管整体失稳变形,其极限承载力和延性均得到提升,并使GFRP管从失稳破坏向材料强度破坏发展;内核长细比越大,套管屈曲约束GFRP管极限承载力相比于内核失稳临界荷载的相对提升幅值越高,约束效果越好;内核与套管间隙越大,GFRP管延性越好,但其极限承载力会降低;套管壁厚过薄会降低GFRP管极限承载力,过厚则约束效果不明显。

     

  • 图  1  屈曲约束装置的尺寸及构造

    Figure  1.  Measure and construction of buckling restraint device

    图  2  GFRP管轴压试验加载装置及测点布置

    Figure  2.  Loading device and measuring-point arrangement for axial compression test of GFRP tubes

    S1-S4—Number of strain gages; D1, D2—Number of displacement meter

    图  3  带套管屈曲约束装置GFRP管轴压试验加载装置及测点布置

    Figure  3.  Loading device and measuring-point arrangement for axial compression test of GFRP tubes with BRB

    S1-S8—Number of strain gages

    图  4  GFRP管轴压试验过程与破坏形态

    Figure  4.  Process and failure form of GFRP tubes axial compression test

    图  5  轴压下GFRP管荷载-位移曲线

    Figure  5.  Load-displacement curves of GFRP tubes under axial compression

    图  6  轴压下GFRP管荷载-轴向应变曲线

    Figure  6.  Load-axial strain curves of GFRP tubes under axial compression

    图  7  带套管屈曲约束装置GFRP管轴压试验过程

    Figure  7.  Process of axial compression test of GFRP tubes with casing buckling restraint device

    图  8  轴压下带套管屈曲约束装置GFRP管荷载-轴向位移曲线

    Figure  8.  Load-axial displacement curves of GFRP tubes with BRB under axial compression

    图  9  内核GFRP管破坏形态

    Figure  9.  Failure pattern of core GFRP tubes

    图  10  轴压下套管屈曲约束GFRP管的荷载-轴向应变曲线

    Figure  10.  Load-axial strain curves of GFRP tubes with BRB under axial compression

    图  11  套管屈曲约束装置有限元模型(FEM)

    Figure  11.  Finite element model (FEM) of casing buckling restrained brace

    图  12  套管屈曲约束装置试验与FEM荷载-轴向位移曲线对比

    Figure  12.  Comparison on load-axial displacement curves between the test of casing buckling restrained brace and FEM

    图  13  有限元模型中L-B试件的GFRP管轴向应力发展情况(MPa)

    Figure  13.  Axial stress development of GFRP tube of L-B specimen in finite element model (MPa)

    图  14  FEM中S-B试件套管屈曲约束装置失效后套管及GFRP管的变形云图 (mm) ((a),(b)) 和应力云图 (MPa)((c),(d))

    Figure  14.  Deformation nephogram (mm) ((a),(b)) and stress nephogram (MPa) ((c),(d)) of casings and GFRP tubes of S-B specimen after failure of BRB in FEM

    图  15  GFRP管内核失效云图

    Figure  15.  Failure cloud maps of core GFRP tubes

    图  16  S-B试件FEM中考虑不同长细比的屈曲约束装置在轴压下的荷载-轴向位移曲线

    Figure  16.  Load-axial displacement curves of BRB under axial pressure with different slenderness ratios considered in FEM of S-B specimens

    图  17  S-B试件FEM中考虑不同间隙的屈曲约束装置在轴压下的荷载-轴向位移曲线

    Figure  17.  Load-axial displacement curves of BRB under axial pressure with different gaps considered in FEM of S-B specimens

    图  18  S-B试件FEM中考虑不同套管壁厚的屈曲约束装置在轴压下的荷载-轴向位移曲线

    Figure  18.  Load-axial displacement curves of BRB under axial pressure with different thicknesses considered in FEM of S-B specimens

    表  1  玻璃纤维增强树脂复合材料(GFRP)、铝合金及不锈钢的材料力学参数

    Table  1.   Mechanical parameters of glass fiber reinforced polymer (GFRP), aluminum alloy and stainless steel

    MaterialElastic modulus/GPaPoisson’s ratio
    GFRP ${E_1} = 63.0$, ${E_{\rm{2}}}{\rm{ = }}{E_{\rm{3}}}{\rm{ = 14}}{\rm{.2}}$, ${G_{{\rm{12}}}}{\rm{ = }}{G_{{\rm{13}}}}{\rm{ = 13}}{\rm{.0}}$, ${G_{{\rm{23}}}}{\rm{ = 9}}{\rm{.4}}$ ${v_{12}} = {v_{13}} = 0.25$, ${v_{23}} = 0.27$
    Al alloy ${E_{{\rm{Al}}}}{\rm{ = 65}}{\rm{.0}}$ ${v_{{\rm{Al}}}} = 0.{\rm{3}}$
    Stainless steel ${E_{{\rm{SS}}}}{\rm{ = 200}}{\rm{.0}}$ ${v_{{\rm{SS}}}} = 0.{\rm{3}}$
    Notes: ${E_{\rm{1}}}$—Elastic modulus of 1-axis; ${E_{\rm{2}}}$—Elastic modulus of 2-axis; ${E_{\rm{3}}}$—Elastic modulus of 3-axis; ${G_{{\rm{12}}}}$—Shear modulus of plane 12; ${G_{{\rm{13}}}}$—Shear modulus of plane 13; ${G_{{\rm{23}}}}$—Shear modulus of plane 23; ${v_{12}},{v_{13}}$—Major Poisson’s ratio; ${v_{23}}$—Minor Poisson’s ratio; ${E_{{\rm{Al}}}}$—Elastic modulus of Al alloy; ${v_{{\rm{Al}}}}$—Poisson’s ratio of Al alloy; ${E_{{\rm{SS}}}}$—Elastic modulus of stainless steel; ${v_{{\rm{SS}}}}$—Poisson’s ratio of stainless steel.
    下载: 导出CSV

    表  2  GFRP管及带套管屈曲约束装置(BRB)管试件的编号及尺寸

    Table  2.   Number and size of GFRP and buckling restrained brace (BRB) tubes mm

    Number Outer sleeveGFRP tube
    DOLTDOLT
    GFRP1 60 1000 6
    GFRP2
    GFRP3
    L-B-1 120 984 4 60 1000 6
    L-B-2
    S-B-1 108
    S-B-2
    Notes: L—Length; DO—Outer diameter; T—Thickness; L-B—Large gap BRB; S-B—Small gap BRB.
    下载: 导出CSV

    表  3  GFRP管与带屈曲约束装置GFRP管轴压试验结果对比

    Table  3.   Comparison of the axial compression test results between GFRP tubes and GFRP tubes with BRB

    SpecimenUltimate load/kNAverage load/kNIncrease coefficient/%Variation/%Failure mode
    GFRP1 133.7 137.7 1.85 Buckling failure
    GFRP2 138.9
    GFRP3 140.6
    S-B-1 247.4 247.4 79.66 0.02 Strength failure
    S-B-2 247.3
    L-B-1 212.9 212.8 54.54 0.05
    L-B-2 212.6
    下载: 导出CSV
  • [1] ZHANG D D, ZHAO Q L, HUANG Y X, et al. Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system[J]. Composite Structures,2014,108:600-615. doi: 10.1016/j.compstruct.2013.09.058
    [2] 冯鹏, 田野, 覃兆平. 纤维增强复合材料拉挤型材桁架桥静动力性能研究[J]. 工业建筑, 2013, 43(6):36-41.

    FENG P, TIAN Y, QIN Z P. Static and dynamic behavior of a truss bridge made of FRP pultruded profiles[J]. Industrial Construction,2013,43(6):36-41(in Chinese).
    [3] ALEXANDER V, ALEXANDER S, FAUSTO T, et al. Pultruded materials and structures: A review[J]. Journal of Composite Materials,2020,54(26):1-37.
    [4] 周龙伟, 赵丽滨. 基于失效机制的单向纤维增强树脂复合材料退化模型[J]. 复合材料学报, 2019, 36(6):1389-1397.

    ZHOU L W, ZHAO L B. Failure mechanisms based degradation model of unidirectional fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1389-1397(in Chinese).
    [5] 朱锐杰, 李峰, 刘加顺. 基于能量法的变截面层合管整体稳定承载力计算方法[J]. 复合材料学报, 2017, 34(10):2211-2219.

    ZHU R J, LI F, LIU J S. A method for calculating bearing capacity of laminated tube with variable cross section based on energy method[J]. Acta Materiae Compositae Sinica,2017,34(10):2211-2219(in Chinese).
    [6] GOODMAN J W, GISKSMAN J A. Structural evaluation of long boron composite column[J]. Composite Materials: Testing and Designing,1969,460:460-469.
    [7] HASHEM Z A, YUAN R L. Short vs. long column behavior of pultruded glass-fiber reinforced polymer composites[J]. Construction and Building Materials,2001,15(8):369-378. doi: 10.1016/S0950-0618(01)00018-6
    [8] HEWSON P. Buckling of pultruded glass fiber-reinforced channel sections[J]. Composites Structures,1978,9(1):56-60.
    [9] ZUREICK A H, SCOTT D W. Short-Term behavior and design of fiber-reinforced polymeric slender members under axial compression[J]. Journal of Composites for Construction,1997,1(4):140-149. doi: 10.1061/(ASCE)1090-0268(1997)1:4(140)
    [10] 南波, 武岳, 孙浩田. 拉挤型CFRP管轴压性能[J]. 哈尔滨工程大学学报, 2015, 36(6):779-783.

    NAN B, WU Y, SUN H T. Buckling behavior of pultruded carbon fiber reinforced polymer pipes under axial compressive load[J]. Journal of Harbin Engineering University,2015,36(6):779-783(in Chinese).
    [11] 陈静芬. 基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J]. 复合材料学报, 2017, 36(4):773-785.

    CHEN J F. Failure loads prediction of composite laminates using a combined elastoplastic damage model[J]. Acta Materiae Compositae Sinica,2017,36(4):773-785(in Chinese).
    [12] 郭小农, 王丽, 罗永峰, 等. CFRP增强铝合金叠层复合材料短柱力学性能[J]. 复合材料学报, 2021, 38(4): 1115-1127.

    GUO X N, WANG L, LUO Y F, et al. Mechanical properties of CFRP reinforced aluminum alloy laminated composite stub column[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1115-1127(in Chinese).
    [13] 金福松, 薛江红, 夏飞, 等. 考虑多尺度界面力学特性的损伤复合材料层合板分岔屈曲性能的等代化[J]. 复合材料学报, 2019, 36(5):1132-1142.

    JIN F S, XUE J H, XIA F, et al. An equivalent model on bifurcation buckling of delaminated composite laminates with multiscale interfacial behaviors[J]. Acta Materiae Compositae Sinica,2019,36(5):1132-1142(in Chinese).
    [14] FÜLÖP A, IVÁNYI M. Experimentally analyzed stability and ductility behaviour of a space-truss roof system[J]. Thin-Walled Structures,2004,42(2):309-320. doi: 10.1016/S0263-8231(03)00062-4
    [15] YANG X, BAI Y, DING F X. Structural performance of a large-scale space frame assembled using pultruded GFRP composites[J]. Composites Structures,2015,133:986-996. doi: 10.1016/j.compstruct.2015.07.120
    [16] PRASAD B K. Experimental investigation of sleeved column[C]. Proc. 33rd AIAA/ASCE Structures, Structural Dynamics and Materials Conference, Dallas USA: AIAA/ASCE, 1992: 991-999.
    [17] SRIDHARA B N. Sleeved compression member: USA, 5175972[P]. 1993-5-1.
    [18] 申波, 马克俭, 邓长根. 轴压套管构件静力稳定的理论与试验研究[J]. 工程力学, 2013, 30(3):8-16.

    SHEN B, MA K J, DENG C G. Theoretical and experimental investigations on the static stability of a sleeved column[J]. Engineering Mechanics,2013,30(3):8-16(in Chinese).
    [19] 申波. 轴压套管构件静力稳定性能的理论与试验研究[D]. 上海: 同济大学, 2007.

    SHEN B. Theoretical and experimental investigations on the static stability of sleeved compression members[D]. Shanghai: Tongji University, 2007(in Chinese).
    [20] 张晨辉, 邓长根, 应武挡. 轴压套管构件的典型破坏模式与极限承载力[J]. 东南大学学报(自然科学版), 2019, 49(2):311-320. doi: 10.3969/j.issn.1001-0505.2019.02.016

    ZHANG C H, DENG C G, YING W D. Typical failure mode and ultimate bearing capacity of sleeved compression member under axial compression[J]. Journal of Southeast University(Natural Science Edition),2019,49(2):311-320(in Chinese). doi: 10.3969/j.issn.1001-0505.2019.02.016
    [21] 黄炳生, 崔海涛, 杨放, 等. 套管加固圆钢管轴心受压性能试验研究[J]. 建筑结构学报, 2020, 41(9):198-206.

    HUANG B S, CUI H T, YANG F, et al. Experimental study on axial compressive behavior of circular steel tubes strengthened by sleeved pipe[J]. Journal of Building Structures,2020,41(9):198-206(in Chinese).
    [22] 李峰, 朱锐杰, 刘建邦, 等. 一种复合材料管屈曲约束装置: 中国, 201921953198[P]. 2020-7-21.

    LI F, ZHU R J, LIU J B, et al. A buckling restrained brace for composite tube: China, 201921953198[P]. 2020-7-21(in Chinese).
    [23] LI F, ZHAO Q L, GAO Y F, et al. A prediction method of the failure load and failure mode for composite pre-tightened tooth connections based on the characteristic lengths[J]. Composite Structures,2016,154:684-693. doi: 10.1016/j.compstruct.2016.06.036
    [24] ZHU R J, LI F, SHAO F, et al. Static and dynamic behaviour of a hybrid PFRP-aluminium space truss girder: Experimental and numerical study[J]. Composite Structures,2020,243:112226. doi: 10.1016/j.compstruct.2020.112226
    [25] ASCE. Pre-standard for load and resistance factor design of pultruded fiber reinforced polymer structures[S]. Arlington: American Composites Manufacturers Association, 2010.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  935
  • HTML全文浏览量:  430
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 录用日期:  2020-12-11
  • 网络出版日期:  2020-12-22
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回