留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性

徐铧东 王玉林 刘蕾 刘文翔 苗常青

徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性[J]. 复合材料学报, 2021, 38(9): 3131-3140. doi: 10.13801/j.cnki.fhclxb.20201231.001
引用本文: 徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性[J]. 复合材料学报, 2021, 38(9): 3131-3140. doi: 10.13801/j.cnki.fhclxb.20201231.001
XU Huadong, WANG Yulin, LIU Lei, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131-3140. doi: 10.13801/j.cnki.fhclxb.20201231.001
Citation: XU Huadong, WANG Yulin, LIU Lei, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131-3140. doi: 10.13801/j.cnki.fhclxb.20201231.001

纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性

doi: 10.13801/j.cnki.fhclxb.20201231.001
基金项目: 载人航天预先研究项目(040101)
详细信息
    通讯作者:

    苗常青,博士,教授,博士生导师,研究方向为柔性复合材料与充气结构  E-mail:miaocq@hit.edu.cn

  • 中图分类号: O347;V423

A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact

  • 摘要: 目前,对纤维织物超高速碰撞过程中的变形、断裂、破碎等力学行为已有较广泛的研究,但对碰撞过程中纱线间接触问题的分析尚未见公开文献报道。考虑纱线间的相互作用,建立了纤维织物的FEM-SPH耦合单胞模型,该模型不仅能够进行纤维织物超高速碰撞过程中的穿孔断裂、破碎、碎片云扩展等损伤行为分析,还能够进行纱线间的接触作用过程分析。结果表明,该模型分析结果与试验结果具有较好的一致性。

     

  • 图  1  芳纶纤维平纹织物几何结构

    Figure  1.  Geometry of aramid fiber plain fabric

    图  2  纤维织物FEM-SPH耦合单胞模型

    Figure  2.  A unit cell model for fiber fabric based on FEM-SPH coupling algorithm

    图  3  纤维织物与弹丸整体模型

    Figure  3.  Numerical model for impact between fabric and projectile

    图  4  碰撞区域织物单元应力分布

    Figure  4.  Stress distribution of fabric in the impact regions

    图  5  单层织物穿孔过程(ν=1.556 km/s)

    Figure  5.  Perforation process of one-layer fabric (ν=1.556 km/s)

    图  6  弹丸在碰撞过程中的动能-时间历程曲线

    Figure  6.  Projectile kinetic energy - time history curve in the process of impact

    图  7  织物穿孔特征(v=3.9 km/s)

    Figure  7.  Perforation morphology of fabrics (v=3.9 km/s)

    图  8  织物穿孔截面

    Figure  8.  Cross section of fabrics

    图  9  试验装置及构型[10]

    Figure  9.  Test equipment and configuration[10]

    图  10  碎片云特性

    Figure  10.  Fragmentation cloud characteristics

    图  11  碎片云轴向质量分布

    Figure  11.  Mass distribution of debris in the axial direction

    图  12  碎片云径向质量分布

    Figure  12.  Mass distribution of debris in radial direction

    图  13  弹丸撞击织物靶板时织物的层间压应力云图(v=0.3 km/s)

    Figure  13.  Compression stress between fabric layers when projectile hits fabric target plate (v=0.3 km/s)

    图  14  弹丸撞击织物靶板时多层织物穿孔过程(v =3.9km/s)

    Figure  14.  Perforation process of multi-layer fabric when projectile hits fabric target plate (v=3.9 km/s)

    图  15  纱线滑移作用表征点

    Figure  15.  Characterization points of yarns slip affection

    图  16  纱线间滑移距离-碰撞速度变化曲线

    Figure  16.  Slip length between yarns with impact velocity

    图  17  纱线间滑移作用摩擦能/吸能总量-碰撞速度变化

    Figure  17.  Ratio of frictional energy to absorbed energy with velocity of yarns slip affection

    表  1  芳纶纤维力学性能[12,28]

    Table  1.   Mechanical properties of aramid fiber[12,28]

    ParameterValue
    ρ/(g·cm−3) 1.45
    Ea/GPa 164.0
    Eb/GPa 3.28
    Ec/GPa 3.28
    νab 0.01
    νbc 0.01
    νca 0.01
    Gab/GPa 3.28
    Gbc/GPa 3.28
    Gca/GPa 3.28
    σfail/GPa 3.88
    εfail 0.045
    Notes: E, ν and G—Elastic modulus, Poisson′s ratio and shear modulus, respectively; σfail—Failure stress; εfail—Failure strain.
    下载: 导出CSV

    表  2  铝合金弹丸力学性能[29]

    Table  2.   Mechanical properties of aluminum projectile[29]

    ParameterValue
    ρ/(g·cm−3) 2.78
    G/GPa 27.5
    A/MPa 369
    B/MPa 684
    n 0.73
    C 0.0083
    Tr 273
    Tm 775
    m 1.7
    Cp/(J·(kg·K)−1) 875
    Γ 2.0
    C/(m·s−1) 5 328
    S1 1.338
    a 0.875
    Notes: ρ—Density; G—Shear modulus; A—Yield strength; B—Strain hardening parameter; n—Strain hardening parameter; C—Strain rate sensitivity constant; m—Thermal softening parameter; Tr—Reference temperature; Tm—Melting temperature; Cp—Specific heat capacity; Γ—Mie-Gruneisen gamma; S1—Mie-slope; C—Reference speed of sound; a—First order volume correction coefficient.
    下载: 导出CSV

    表  3  纤维织物靶板吸能特性

    Table  3.   Comparison of energy absorption results of fabric target plates

    ExampleMethodProjectile initial kinetic energy/JEnergy absorbed/JKinetic energy absorption ratePercentage error
    1.039 km/s Experiment[31] 136 4.256 3.13%
    Simulation 136 4.51 3.32% 6.1%
    1.556 km/s Experiment[31] 306 10.85 3.55%
    Simulation 306 9.757 3.20% 10.0%
    下载: 导出CSV
  • [1] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding[J]. International Journal of Impact Engineering,1995,17(1):217-228.
    [2] KE F, HUANG J, WEN X, et al. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact[J]. Acta Astronautica,2016,127:553-560. doi: 10.1016/j.actaastro.2016.06.037
    [3] PUTZAR R, ZHENG S, AN J, et al. A stuffed Whipple shield for the Chinese space station[J]. International Journal of Impact Engineering,2019,132:103304. doi: 10.1016/j.ijimpeng.2019.05.018
    [4] CHRISTIANSEN E L, KERR J H, SCHNEIDER W C, et al. Flexible and deployable meteoroid/debris shielding for spacecraft[J]. International Journal of Impact Engineering,1999,23(1):125-136. doi: 10.1016/S0734-743X(99)00068-8
    [5] 苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究[J]. 载人航天, 2017, 23(2):173-176.

    MIAO Changqing, DU Mingjun, HUANG Lei, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure[J]. Manned Spaceflight,2017,23(2):173-176(in Chinese).
    [6] SEEDHOUSE E. Bigelow aerospace colonizing space one module at a time[M]. New York: Springer, 2015.
    [7] BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris[J]. Acta Astronautica,2019,163:54-61. doi: 10.1016/j.actaastro.2019.04.046
    [8] 管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究[J]. 机械工程学报, 2015, 51(3):66-72. doi: 10.3901/JME.2015.03.066

    GUAN Gongshun, PU Dongdong, HA Yue, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature[J]. Journal of Mechanical Engineering,2015,51(3):66-72(in Chinese). doi: 10.3901/JME.2015.03.066
    [9] 哈跃, 刘志勇, 管公顺, 等. 玄武岩纤维布超高速撞击损伤分析[J]. 高压物理学报, 2012, 26(5):557-563.

    HA Yue, LIU Zhiyong, GUAN Gongshun, et al. Damage investigation of hypervelocity impact on woven fabric of basalt fiber[J]. Chinese Journal of High Pressure Physics,2012,26(5):557-563(in Chinese).
    [10] RUDOLPH M, SCHAFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics[J]. Acta Astronautica,2012,76:42-50. doi: 10.1016/j.actaastro.2012.02.002
    [11] MOON J, YOON S H, KIM C. High velocity impact test of a hybrid sandwich composite shield with unrestrained boundary fabric[J]. Composite Structures,2016,153:60-68. doi: 10.1016/j.compstruct.2016.05.088
    [12] MOON J B, PARK Y, SON G, et al. Computational analysis of a sandwich shield with free boundary inserted fabric at high velocity impact[J]. Advanced Composite Materials,2017,26(3):197-218. doi: 10.1080/09243046.2016.1232010
    [13] BALUCH A H, KIM Y, CHOI C, et al. Carbon/Epoxy composite shielding system and effect of stuffing fabric on system performance[J]. Composite Structures,2016,136:182-190. doi: 10.1016/j.compstruct.2015.09.018
    [14] YE Z, ZHANG X, ZHENG G, et al. A material point method model and ballistic limit equation for hyper velocity impact of multi-layer fabric coated aluminum plate[J]. International Journal of Mechanics and Materials in Design,2018,14(4):511-526. doi: 10.1007/s10999-017-9387-0
    [15] 祖振南. 纤维编织材料超高速撞击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZU Zhennan. Study on hypervelocity impact properties of fiber braided material[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
    [16] FAHRENTHOLD E P. Computational design of metal–fabric orbital debris shielding[J]. Journal of Spacecraft and Rockets,2017,54(5):1060-1067. doi: 10.2514/1.A33736
    [17] ZHAO S, SONG Z, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics[J]. International Journal of Impact Engineering,2020,144:103586. doi: 10.1016/j.ijimpeng.2020.103586
    [18] 刘滨涛, 黄海, 贾光辉, 等. Nomex-Kevlar平纹织物超高速撞击本构模型开发[J]. 复合材料学报, 2011, 28(1):194-198.

    LIU Bintao, HUANG Hai, JIA Guanghui, et al. Development of material constitutive model for the Nomex Kevlar plain woven fabric[J]. Acta Materiae Compositae Sinica,2011,28(1):194-198(in Chinese).
    [19] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展[J]. 高压物理学报, 2019, 33(3):164-196.

    LIN Jianyu, LUO Binqiang, XU Mingyang, et al. Progress of aluminum projectile impacting on plate with hypervelocity[J]. Chinese Journal of High Pressure Physics,2019,33(3):164-196(in Chinese).
    [20] NISHIDA M, HAYASHI K, NAKAGAWA J, et al. Influence of temperature on crater and ejecta size following hypervelocity impact of aluminum alloy spheres on thick aluminum alloy targets[J]. International Journal of Impact Engineering,2012,42:37-47. doi: 10.1016/j.ijimpeng.2011.11.006
    [21] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding[J]. International Journal of Impact Engineering,2001,26(1):93-104.
    [22] YANG E C, LINFORTH S, NGO T, et al. Hybrid-mesh modelling & validation of woven fabric subjected to medium velocity impact[J]. International Journal of Mechanical Sciences,2018,144:427-437. doi: 10.1016/j.ijmecsci.2018.05.017
    [23] NILAKANTAN G, NUTT S. Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets[J]. Defence Technology,2018,14(3):165-178. doi: 10.1016/j.dt.2018.01.002
    [24] JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering,2003,28(9):947-966. doi: 10.1016/S0734-743X(03)00012-5
    [25] HE Q, CHEN X, CHEN J. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud[J]. Acta Astronautica,2020,175:99-117. doi: 10.1016/j.actaastro.2020.05.056
    [26] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展[J]. 力学学报, 2013, 45(5):639-652.

    HU De’an, HAN Xu, XIAO Yihua, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(5):639-652(in Chinese).
    [27] GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests[J]. Computational Materials Science,2000,17(1):7-20. doi: 10.1016/S0927-0256(99)00086-5
    [28] GOPINATH G, ZHENG J Q, BATRA R C. Effect of matrix on ballistic performance of soft body armor[J]. Composite Structures,2012,94(9):2690-2696. doi: 10.1016/j.compstruct.2012.03.038
    [29] BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology[J]. International Journal of Impact Engineering,2008,35(12):1449-1458. doi: 10.1016/j.ijimpeng.2008.07.057
    [30] GIANNAROS E, KOTZAKOLIOS A, SOTIRIADIS G, et al. On fabric materials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation[J]. Composite Structures,2018,204:745-754. doi: 10.1016/j.compstruct.2018.07.090
    [31] PARK Y, KIM Y, BALUCH A H, et al. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric[J]. International Journal of Impact Engineering,2014,72:67-74. doi: 10.1016/j.ijimpeng.2014.05.007
    [32] 邸德宁, 陈小伟, 文肯, 等. 超高速碰撞产生的碎片云研究进展[J]. 兵工学报, 2018, 39(10):2016-2047.

    DI Dening, CHEN Xiaowei, WEN Ken, et al. A review on the study of debris cloud produced by normal hypervelocity impact upon a thin plate[J]. Acta Armamentarii,2018,39(10):2016-2047(in Chinese).
    [33] PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates[J]. International Journal of Impact Engineering,1993,14(1):573-586.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  735
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 录用日期:  2020-12-23
  • 网络出版日期:  2020-12-31
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回