留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验

姚淇耀 陆宸宇 彭林欣 滕晓丹 罗月静

姚淇耀, 陆宸宇, 彭林欣, 等. 氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验[J]. 复合材料学报, 2022, 39(3): 1215-1227. doi: 10.13801/j.cnki.fhclxb.20210426.005
引用本文: 姚淇耀, 陆宸宇, 彭林欣, 等. 氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验[J]. 复合材料学报, 2022, 39(3): 1215-1227. doi: 10.13801/j.cnki.fhclxb.20210426.005
YAO Qiyao, LU Chenyu, PENG Linxin, et al. Experimental study on tensile and bending properties of sea sand ECC reinforced by BFRP bars under chloride salt erosion[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1215-1227. doi: 10.13801/j.cnki.fhclxb.20210426.005
Citation: YAO Qiyao, LU Chenyu, PENG Linxin, et al. Experimental study on tensile and bending properties of sea sand ECC reinforced by BFRP bars under chloride salt erosion[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1215-1227. doi: 10.13801/j.cnki.fhclxb.20210426.005

氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验

doi: 10.13801/j.cnki.fhclxb.20210426.005
基金项目: 国家自然科学基金(51738004;51878186;11962001);国家重点研发计划(2019YFC1511103);中国博士后科学基金(2018M633298);广西创新驱动重大专项(桂科AA18118055);广西研究生教育创新计划(YCSW2019048)
详细信息
    通讯作者:

    滕晓丹,博士,讲师,研究方向为高性能水泥基复合材料  E-mail:xdteng@gxu.edu.cn

  • 中图分类号: TU528.58

Experimental study on tensile and bending properties of sea sand ECC reinforced by BFRP bars under chloride salt erosion

  • 摘要: 为推广使用海洋资源,采用海砂代替硅砂制备工程水泥基复合材料(Engineering cementitious composites, ECC)。将海砂ECC与玄武岩纤维增强树脂复合材料(Basalt fiber reinforced polymer, BFRP) 筋结合,充分发挥两种材料的优点,以获得更强的耐腐蚀性能及更为优异的拉伸性能。通过单轴拉伸及四点弯曲试验,研究了不同侵蚀制度及配筋率对BFRP筋增强海砂ECC的拉伸性能及弯曲性能的影响,并与未配筋的海砂ECC作比较。结果表明,BFRP筋增强海砂ECC的极限拉应力与海砂ECC相比提升了2.46~4.92倍,极限拉应变提升了1.40~2.94倍,干湿循环作用下BFRP筋增强海砂ECC的极限荷载是海砂ECC极限荷载的3.14~4.29倍。不同侵蚀制度下,BFRP筋增强海砂ECC的最佳配筋率均为0.67%。研究的BFRP筋增强海砂ECC可为桥面无缝连接板等设计提供参考。

     

  • 图  1  BFRP筋单轴拉伸试验

    Figure  1.  Uniaxial tensile test of BFRP bars

    图  2  单轴拉伸试件尺寸

    Figure  2.  Size of uniaxial tensile specimens

    图  3  四点弯曲加载装置示意图

    Figure  3.  Schematic diagram of four-point bending loading device

    F—Four-point bending load; LVDT—Displacement meter

    图  4  BFRP筋增强海砂ECC复合板配筋图

    Figure  4.  Reinforcement of BFRP reinforced sea sand ECC

    图  5  单轴拉伸荷载下海砂ECC与BFRP筋增强海砂ECC复合板的破坏模式对比

    Figure  5.  Comparison of failure modes between sea sand ECC and BFRP reinforced sea sand ECC under uniaxial tensile loading

    图  6  不同配筋率下BFRP筋增强海砂ECC的弹性模量对比

    Figure  6.  Comparison of elastic modulus of BFRP bars reinforced sea sand ECC with different reinforcement ratios

    图  7  BFRP筋增强海砂ECC单轴拉伸应力-应变曲线

    Figure  7.  Uniaxial tensile stress-strain curves of BFRP reinforced sea sand ECC

    图  8  侵蚀制度及配筋率对BFRP筋增强海砂ECC单轴拉伸性能的影响

    Figure  8.  Effect of erosion system and reinforcement ratio on uniaxial tensile properties of BFRP bars reinforced sea sand ECC

    图  9  BFRP筋增强海砂ECC单轴拉伸性能指标-配筋率的线性拟合

    Figure  9.  Linear fitting of uniaxial tensile properties of BFRP bars reinforced sea sand ECC-reinforcement ratio

    图  10  四点弯曲荷载下BFRP筋增强海砂ECC的破坏模式对比

    Figure  10.  Comparison of failure modes of BFRP bars reinforced sea sand ECC under four-point bending

    图  11  BFRP筋增强海砂ECC四点弯曲荷载-位移曲线

    Figure  11.  Four-point bending load-displacement curves of BFRP reinforced sea sand ECC

    图  12  侵蚀制度及配筋率对BFRP筋增强海砂ECC四点抗弯性能的影响

    Figure  12.  Effect of erosion systems and reinforcement ratio on four-point bending properties of BFRP bars reinforced sea sand ECC

    图  13  BFRP筋增强海砂ECC韧性指标计算图示

    Figure  13.  Toughness index of BFRP bars reinforced sea sand ECC calculation diagram

    Fcr—First-crack load; δcr—First-crack deflection; Fu—Ultimate load; δu—Ultimate deflection

    图  14  FRP筋增强海砂ECC复合板受弯性能与配筋率关系曲线

    Figure  14.  Relation curves between flexural performance and reinforcement ratio of BFRP reinforced sea sand ECC

    图  15  FRP筋增强海砂ECC复合板抗弯强度与弯曲抗裂强度比值-配筋率曲线

    Figure  15.  Ratio of flexural strength to flexural cracking strength of BFRP reinforced sea sand ECC-reinforcement ratio curves

    表  1  水泥、粉煤灰和偏高岭土的化学成分

    Table  1.   Chemical composition of cement, fly ash and metakaolin wt%

    MaterialCaOSiO2Al2O3Fe2O3MgOSO3Na2OK2OTiO2P2O5
    Cement 63.21 18.48 6.74 3.45 3.24 3.16 0.171 0.533 0.35 0.158
    Fly ash 2.58 32.54 24.76 4.92 0.397 1.17 0.523 0.589 0.717 0.251
    Metakaolin 0.04 53.29 43.11 0.68 0.22 0.11 0.44 0.42 0.28 0.52
    下载: 导出CSV

    表  2  聚乙烯醇(PVA)纤维的物理力学性能

    Table  2.   Physical and mechanical characteristics of polyvinyl alcohol (PVA) fiber

    Length/mmDiameter/μmTensile strength/MPaElongation/%Elastic modulus/GPaDensity /(g·cm−3)
    12391620742.81.3
    下载: 导出CSV

    表  3  玄武岩纤维增强树脂复合材料(BFRP)筋的物理力学性能

    Table  3.   Physical and mechanical characteristics of basalt fiber reinforced polymer (BFRP) bars

    Diameter/
    mm
    Peak tensile
    strength/MPa
    Elongation/
    %
    Elastic
    modulus/GPa
    Density/
    (g·cm−3)
    Longitudinal linear expansion
    coefficient/(10−6−1)
    4 1099.52(44.08) 2.36(0.14) 57.28(2.18) 1.9 9.0
    Notes: Data in brackets are standard deviations.
    下载: 导出CSV

    表  4  海砂工程水泥基复合材料(ECC)配合比

    Table  4.   Mixture proportion of sea sand engineering cementitious composite (ECC) kg/m3

    CementFly ashMetakaolinSilica sandSea sandWaterFiber
    2788905617826733026
    下载: 导出CSV

    表  5  BFRP筋增强海砂ECC复合板试件明细

    Table  5.   Specimen detail of BFRP reinforced sea sand ECC

    Specimen IDErosion
    system
    Number of
    BFRP bars
    4BFRP/ECC(GL, GW) Wetting-drying cycling in NaCl solution 4
    3BFRP/ECC(GL, GW) 3
    2BFRP/ECC(GL, GW) 2
    4BFRP/ECC(JL, JW) Soaking in NaCl solution 4
    3BFRP/ECC(JL, JW) 3
    2BFRP/ECC(JL, JW) 2
    Notes: In specimen ID, "G"—Wetting-drying cycling in NaCl solution; "J"—Soaking in NaCl solution; "L"—Uniaxial tensile test; "W"—Four-point bending test.
    下载: 导出CSV

    表  6  不同侵蚀制度及配筋率下BFRP筋增强海砂ECC复合板的单轴拉伸试验结果

    Table  6.   Uniaxial tensile test results of BFRP reinforced sea sand ECC under different erosion systems and reinforcement ratios

    Specimen
    ID
    First-crack
    strength/
    MPa
    Ultimate
    tensile
    strength/
    MPa
    Ultimate
    tensile
    strain/
    %
    2BFRP/ECC(GL) 5.04 11.33 4.92
    3BFRP/ECC(GL) 9.40 15.71 6.15
    4BFRP/ECC(GL) 9.11 19.35 6.99
    2BFRP/ECC(JL) 5.08 13.96 5.65
    3BFRP/ECC(JL) 9.38 14.44 6.27
    4BFRP/ECC(JL) 9.02 16.24 8.07
    下载: 导出CSV

    表  7  不同侵蚀制度下BFRP筋增强海砂ECC复合板的四点弯曲试验结果

    Table  7.   Four-point bending test results of BFRP reinforced sea sand ECC under different erosion systems

    Specimen IDFirst-crack load/NFirst-crack deflection/mmUltimate load/NUltimate deflection/mm
    2BFRP/ECC(GW) 592 0.55 2212 15.47
    3BFRP/ECC(GW) 557 0.45 2478 15.00
    4BFRP/ECC(GW) 590 0.88 3023 15.60
    2BFRP/ECC(JW) 850 0.67 3166 11.03
    3BFRP/ECC(JW) 517 0.60 2256 12.97
    4BFRP/ECC(JW) 297 0.30 2183 18.70
    下载: 导出CSV

    表  8  BFRP筋增强海砂ECC弯曲韧性指标

    Table  8.   Flexural toughness indexes of BFRP bars reinforced sea sand ECC

    Specimen IDI5I10I20I30Iu
    2BFRP/ECC(GW) 6 12 33 60 162
    3BFRP/ECC(GW) 9 23 66 128 613
    4BFRP/ECC(GW) 6 16 47 89 108
    2BFRP/ECC(JW) 6 14 38 69 95
    3BFRP/ECC(JW) 6 14 37 68 131
    4BFRP/ECC(JW) 6 13 37 73 840
    Note: I5, I10, I20, I30 and Iu—Flexural toughness indexes of BFRP bars reinforced sea sand ECC.
    下载: 导出CSV
  • [1] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009(S2):23-67.

    LI Qinghua, XU Shilang. Performance and application of ultra high toughness cementitious composite: A review[J]. Engineering Mechanics,2009(S2):23-67(in Chinese).
    [2] HUANG B T, YU J, WU J, et al. Seawater sea-sand engineered cementitious composites (SS-ECC) for marine and coastal applications[J]. Composites Communications,2020(20):100353.
    [3] 徐世烺, 李庆华, 李贺东. 碳纤维编织网增强超高韧性水泥基复合材料弯曲性能的试验研究[J]. 土木工程学报, 2007(12):69-76. doi: 10.3321/j.issn:1000-131x.2007.12.009

    XU Shilang, LI Qinghua, LI Hedong. An experiment study on the flexural properties of carbon textile reinforced ECC[J]. China Civil Engineering Journal,2007(12):69-76(in Chinese). doi: 10.3321/j.issn:1000-131x.2007.12.009
    [4] 葛文杰, 陈俊钰, 戴强, 等. 钢筋增强ECC-混凝土复合梁受弯性能试验研究[J]. 混凝土, 2017(11):35-39. doi: 10.3969/j.issn.1002-3550.2017.11.009

    GE Wenjie, CHEN Junyu, DAI Qiang, et al. Experimental study on the flexural behavior of ECC-concrete composite beams reinforced of steel bars[J]. Concrete,2017(11):35-39(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.11.009
    [5] 范建伟, 李可, 王新玲, 等. 不锈钢绞线工程用水泥基复合材料的拉伸试验分析[J]. 工业建筑, 2020, 50(9):94-98.

    FAN Jianwei, LI Ke, WANG Xinling, et al. Experimental analysis of stainless steel strand reinforce ECC under tension[J]. Industrial Construction,2020,50(9):94-98(in Chinese).
    [6] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12):3220-3228.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica,2020,37(12):3220-3228(in Chinese).
    [7] 王新玲, 陈永杰, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验[J]. 复合材料学报, 2021, 38(4): 1292-1301.

    WANG Xinling, CHEN Yongjie, QIAN Wenwen, et al. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh [J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1292-1301(in Chinese).
    [8] 夏立鹏, 张黎飞, 郑愚. CFRP增强工程水泥基复合材料桥面连接板的结构和性能[J]. 复合材料学报, 2019, 36(4):848-859.

    XIA Lipeng, ZHANG Lifei, ZHENG Yu. Structural performance of CFRP reinforced ECC link slabs in jointless bridge decks[J]. Acta Materiae Compositae Sinica,2019,36(4):848-859(in Chinese).
    [9] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1):134-150.

    YIN Shiping, HUA Yuntao, XU Shilang. A review on research progress and application of concrete structures internally reinforced with FRP bars[J]. Journal of Building Structures,2021,42(1):134-150(in Chinese).
    [10] 周甲佳, 姚少科, 景川, 等. FRP筋-ECC梁受弯性能[J]. 建筑科学与工程学报, 2020, 37(6):46-54.

    ZHOU Jiajia, YAO Shaoke, JING Chuan, et al. Flexural behavior of FRP-reinforced ECC beam[J]. Journal of Architecture and Civil Engineering,2020,37(6):46-54(in Chinese).
    [11] ZHENG Y, ZHANG L F, XIA L P. Investigation of the behaviour of flexible and ductile ECC link slab reinforced with FRP[J]. Construction and Building Materials,2018,166:694-711. doi: 10.1016/j.conbuildmat.2018.01.188
    [12] 葛文杰, 冯肖, 季翔, 等. 纤维增强复材筋增强工程用水泥基复合材料-混凝土复合梁受弯性能试验研究[J]. 工业建筑, 2017, 47(11):23-27, 94.

    GE Wenjie, FENG Xiao, JI Xiang, et al. Experimental research on the flexural behavior of ECC-concrete composite beam reinforce with FRP bars[J]. Industrial Construction,2017,47(11):23-27, 94(in Chinese).
    [13] 中华人民共和国国家质量监督检验检疫总局. GB/T 14684—2011 建设用砂[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 14684—2011 Sand for construction[S]. Beijing: China Standards Press, 2011(in Chinese).
    [14] 中华人民共和国住房和城乡建设部. JG/T 406—2013 土木工程用玻璃纤维增强筋[S]. 北京: 中国标准出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. JG/T 406—2013 Class fibre reinforced plastics rebar for civil engineering[S]. Beijing: China Standards Press, 2013(in Chinese).
    [15] LI V C, WANG S, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal,2001(6):483-492.
    [16] 吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京: 科学出版社, 2017: 317.

    WU Zhishen, WANG Xin, WU Gang. FRP reinforced engineering structural systems[M]. Beijing: Science Press, 2017: 317(in Chinese).
    [17] 张庆章, 黄庆华, 张伟平, 等. 海水潮汐区混凝土氯盐侵蚀加速试验方法研究[J]. 结构工程师, 2010, 26(3):145-153. doi: 10.3969/j.issn.1005-0159.2010.03.024

    ZHANG Qingzhang, HUANG Qinghua, ZHANG Weiping, et al. Study on accelerated chloride penetration testing methods for concrete in tidal zone[J]. Structural Engineers,2010,26(3):145-153(in Chinese). doi: 10.3969/j.issn.1005-0159.2010.03.024
    [18] 曾俊杰, 王胜年, 范志宏, 等. 偏高岭土改善海工混凝土抗氯离子侵蚀性的效果及机理[J]. 武汉理工大学学报, 2015, 37(4): 22-28.

    ZENG Junjie, WANG Shengnian, FAN Zhihong, et al. Improvement effect and mechanism of metakaolin on marine concrete chloride penetration resistance[J]. Journal of Wuhan University of Technology, 2015, 37(4): 22-28(in Chinese).
    [19] LI V C. Tailoring ECC for special attributes: A review[J]. International Journal of Concrete Structures and Materials,2012(9):135-144.
    [20] 高杰, 张暄, 韩乐冰, 等. 超高韧性水泥基复合材料弯曲韧性研究[J]. 硅酸盐通报, 2020, 39(4):1050-1056.

    GAO Jie, ZHANG Xuan, HAN Lebing, et al. Study on bending toughness of ultra-high toughness cementitious composites[J]. Bulletin of the Chinese Ceramic Society,2020,39(4):1050-1056(in Chinese).
    [21] 史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12):86-97.

    SHI Zhanchong, SU Qingtian, SHAO Changyu, et al. Basic mechanical behavior and flexural toughness evaluation method of coarse aggregate UHPC[J]. China Civil Engineering Journal,2020,53(12):86-97(in Chinese).
    [22] American Society of Testing Materials. ASTM-C1018-98 Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete[S]. Philadelphia, America: Book of ASTM Standard, 1997.
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  968
  • HTML全文浏览量:  489
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-19
  • 录用日期:  2021-04-21
  • 网络出版日期:  2021-04-27
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回