留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响

占红星 芦刚 严青松 查军辉 罗凌

占红星, 芦刚, 严青松, 等. 预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响[J]. 复合材料学报, 2020, 37(0): 1-6
引用本文: 占红星, 芦刚, 严青松, 等. 预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响[J]. 复合材料学报, 2020, 37(0): 1-6
占红星, 芦刚, 严青松, 等. 预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响[J]. 复合材料学报, 2020, 37(0): 1-6
Citation: 占红星, 芦刚, 严青松, 等. 预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响[J]. 复合材料学报, 2020, 37(0): 1-6

预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响

基金项目: 国家自然科学基金(51861027);江西省优势科技创新团队重点项目(20181BCB19001)
详细信息
    通讯作者:

    芦刚,博士,副教授,研究方向为液态金属精密成形理论及工艺  Email:aimulalg@163.com

  • 中图分类号: TQ174.75

Effect of pre-added cristobalite content on high temperature creep properties of silicon-based ceramic core

  • 摘要: 将方石英作为第二相、锆英砂作为矿化剂加入到SiO2基陶瓷型芯基体材料中,采用热压注法制备陶瓷型芯试样。研究预加方石英含量对SiO2基陶瓷型芯性能的影响,分析在1550℃下预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响机制。结果表明,随着预加方石英含量的增加,SiO2基陶瓷型芯抗弯强度和高温挠度逐渐减小、型芯的气孔率逐渐增加。当预加方石英含量为10wt%时,石英玻璃析晶速率最快,方石英开始相连构成耐高温的方石英骨架,型芯抵抗高温变形的能力显著提升,陶瓷型芯的综合性能最佳,其抗弯强度、高温挠度和气孔率分别为5.13 MPa、1.18 mm和40.55%。
  • 图  1  陶瓷型芯焙烧工艺曲线

    Figure  1.  Firing process curve of ceramic core

    图  2  预加方石英含量对陶瓷型芯高温挠度的影响

    Figure  2.  Effect of pre-added cristobalite content on high temperature deflection of ceramic core

    图  3  预加方石英含量对陶瓷型芯显气孔率和抗弯强度的影响

    Figure  3.  Effect of pre-added cristobalite content on apparent porosity and flexural strength of ceramic core

    图  4  预加不同含量方石英的陶瓷型芯XRD图谱

    Figure  4.  XRD pattern of ceramic core with different contents of cristobalite

    图  5  预加不同含量方石英的陶瓷型芯断口形貌

    Figure  5.  Fracture morphologies of ceramic core with different cristobalite contents

    表  1  陶瓷型芯原料配比(wt%)

    Table  1.   Raw material ratios of ceramic core (wt%)

    NumberingQuartz glass powderZircon sandCristobalite
    A0 85 15 0
    A1 80 15 5
    A2 75 15 10
    A3 70 15 15
    A4 65 15 20
    A5 60 15 25
    下载: 导出CSV
  • [1] 吴大观. 关于新版综合高性能涡轮发动机技术计划——兼谈航空发动机研制中“基础技术”和“验证机”的重要作用[J]. 航空发动机, 2003, 2929(2):1-4. doi:  10.3969/j.issn.1672-3147.2003.02.001

    WU Daguan. About the new version of the comprehensive high-performance turbine engine technology plan-also talk about the important role of "basic technology" and "verification machine" in the development of aero engine[J]. Aeroengine,2003,2929(2):1-4(in Chinese). doi:  10.3969/j.issn.1672-3147.2003.02.001
    [2] 梁启如, 吴玉胜, 刘孝福等. 航空发动机涡轮叶片铸造用陶瓷型芯研究进展[J]. 铸造, 2018, 67(09):790-793. doi:  10.3969/j.issn.1001-4977.2018.09.006

    LIANG Qiru, WU Yusheng, LIU Xiaofu, et al. Research progress of ceramic core for aeroengine turbine blade casting[J]. Foundry,2018,67(09):790-793(in Chinese). doi:  10.3969/j.issn.1001-4977.2018.09.006
    [3] 方昌德. 航空发动机的发展前景[J]. 航空发动机, 2004, 30(1):1-5. doi:  10.3969/j.issn.1672-3147.2004.01.001

    FANG Changde. Development prospects of aero engine[J]. Aeroengine,2004,30(1):1-5(in Chinese). doi:  10.3969/j.issn.1672-3147.2004.01.001
    [4] 赵效忠. 陶瓷型芯的制备与使用[M]. 北京: 科学出版社, 2013: 1.

    ZHAO Xiaozhong. Preparation and application of ceramic core[M]. Beijing: Science Press, 2013: 1(in Chinese).
    [5] Wei Q, Zhong J, Xu Z, et al. Microstructure evolution and mechanical properties of ceramic shell moulds for investment casting of turbine blades by selective laser sintering[J]. Ceramics International,2018,44(11):12088-12097. doi:  10.1016/j.ceramint.2018.03.227
    [6] KHAMKONGKAEO A, BOOTCHANONT A, KLYSUBUN W, et al. Effect of phosphate compound on physical and mechanical properties of SiO2 ceramic[J]. Ceramics International,2019,45(1):1356-1362. doi:  10.1016/j.ceramint.2018.07.253
    [7] KIM Y H, YEO J G, CHOI S C. Shrinkage and flexural strength improvement of silica-based composites for ceramic cores by colloidal alumina infiltration[J]. Ceramics International,2016,42(7):8878-8883. doi:  10.1016/j.ceramint.2016.02.137
    [8] KIM Y H, YEO J G, CHOI S C. The effect of fused silica crystallization on flexural strength and shrinkage of ceramic cores for investment casting[J]. Journal of the Korean Ceramic Society,2016,53(2):246-252. doi:  10.4191/kcers.2016.53.2.246
    [9] 李世峰, 张定华, 卜昆. 单晶空心涡轮叶片精确控形技术的研究进展[J]. 稀有金属材料与工程, 2012, 41(03):559-564. doi:  10.3969/j.issn.1002-185X.2012.03.039

    LI Shifeng, ZHANG Dinghua, BU Kun. Research progress in precise shape-controlling technology of single crystal hollow turbine blades[J]. Rare Metal Mat Eng,2012,41(03):559-564(in Chinese). doi:  10.3969/j.issn.1002-185X.2012.03.039
    [10] 覃业霞, 杜爱兵, 张睿. 精密铸造用氧化铝基复合陶瓷型芯[J]. 稀有金属材料与工程, 2007(S1):774-776.

    QIN Yexia, DU Aibing, ZHANG Rui, et al. Alumina-Based Ceramic Core Nano-Composites for Investment Casting[J]. Rare Metal Materials and Engineering,2007(S1):774-776(in Chinese).
    [11] WU H H, LI D C, TANG Y P, et al. Improving high temperature properties of alumina based ceramic cores containing yttria by vacuum impregnating[J]. Materials Science and Technology,2011,27(4):823-828. doi:  10.1179/026708309X12506933873062
    [12] 康海峰, 李飞, 赵彦杰, 徐华苹. 高温合金空心叶片精密铸造用陶瓷型芯与型壳的研究现状[J]. 材料工程, 2013(08):85-91. doi:  10.3969/j.issn.1001-4381.2013.08.014

    KANG Haifeng, LI Fei, ZHAO Yanjie, XU Huaping. Research status on ceramic cores and shells for superalloy hollow blades investment casting[J]. Journal of Materials Engineering,2013(08):85-91(in Chinese). doi:  10.3969/j.issn.1001-4381.2013.08.014
    [13] 顾国红, 曹腊梅. 熔模铸造空心叶片用陶瓷型芯的发展[J]. 铸造技术, 2002, 23(2):81-83.

    GU Guohong, CAO Lamei. Development of ceramic coresfor investment casting hollow blades[J]. Foundry Technology,2002,23(2):81-83(in Chinese).
    [14] 王俊奎, 周施真. 陶瓷基复合材料的研究进展[J]. 复合材料学报, 1990(04):1-8.

    WANG Junkui, ZHOU Shizhen. Research progress of ceramic matrix composites[J]. Acta Materiae Compositae Sinica,1990(04):1-8(in Chinese).
    [15] 芦刚, 于航, 严青松, 等. Al2O3纤维对SiO2基陶瓷型芯的烧缩阻滞[J]. 复合材料学报, 2018, 35(1):168-172.

    LU Gang, YU Hang, YAN Qingsong, et al. Effect of Al2O3 fiber on shrinkage blocking of SiO2 matrix ceramic core[J]. Acta Materiae Compositae Sinica,2018,35(1):168-172(in Chinese).
    [16] XU Z L, ZHONG J W, SU X L. Experimental study on mechanical properties of silica-based ceramic core for directional solidification of single crystal superalloy[J]. Ceramics International,2018,44:394-401. doi:  10.1016/j.ceramint.2017.09.189
    [17] WERESZCZAK A A, BREDER K, FERBER M K, et al. Dimensional changes and creep of silica core ceramics used in investment casting of superalloys[J]. Journal of materials science,2002,37(19):4235-4245. doi:  10.1023/A:1020060508311
    [18] KIM Y H, YEO J, LEE J S, et al. Influence of silicon carbide as a mineralizer on mechanical and thermal properties of silica-based ceramic cores[J]. Ceramics International,2016,42(13):14738-14742. doi:  10.1016/j.ceramint.2016.06.100
    [19] WILSON P J, BLACKBUM S, GREENWOOD R W, et al. The role of zircon particle size distribution, surface area and contamination on the properties of silica–zircon ceramic materials[J]. Journal of the European Ceramic Society,2011,31(9):1849-1855. doi:  10.1016/j.jeurceramsoc.2011.03.005
    [20] 陈昊, 李鑫, 牛书鑫, 等. 氧化硅/莫来石陶瓷型芯的析晶行为及性能研究[J]. 人工晶体学报, 2020, 49(05):902-907. doi:  10.3969/j.issn.1000-985X.2020.05.023

    CHEN Hao, LI Xin, NIU Shuxin, et al. Crystallization behavior and properties of silica/mullite ceramic cores[J]. Journal of Synthetic Crystals,2020,49(05):902-907(in Chinese). doi:  10.3969/j.issn.1000-985X.2020.05.023
    [21] 赵效忠. 陶瓷型芯的制备与使用[M]. 北京: 科学出版社, 2013: 165.

    ZHAO Xiaozhong. Preparation and application of ceramic core[M]. Beijing: Science Press, 2013: 165 ((in Chinese).
    [22] LI K, JIANG W, WANG S, et al. Effect of specimen thickness on the creep deformation of a silica-based ceramic core material[J]. Journal of Alloys and Compounds,2018,763:781-790. doi:  10.1016/j.jallcom.2018.05.253
    [23] CHAO C H, LU H Y. Optimal composition of zircon–fused silica ceramic cores for casting superalloys[J]. Journal of the American Ceramic Society,2002,85(4):773-779.
    [24] 田国利. 硅基陶瓷型芯方石英含量与叶片浇注不露芯率的关系[J]. 材料工程, 1995(07):33-35.

    TIAN Guoli. Effects of cristobalite contents of silica base ceramics core on the rate of qualified pouring[J]. Journal of Materials Engineering,1995(07):33-35(in Chinese).
    [25] 李倩, 马德文, 蒋殷红, 等. 影响定向空心叶片陶瓷型芯性能的一个重要因素──方石英含量的控制[J]. 材料工程, 1994(05):18-19.

    LI Qian, MA Dewen, JIANG Yinhong, et al. Effcet of cristoablite content on the properties of ceramic core in making directionally solidified hollow blade[J]. Journal of Materials Engineering,1994(05):18-19(in Chinese).
    [26] 国防科学技术工业委员会. 熔模铸造陶瓷型芯性能试验方法[S]. 北京: 中国航空综合技术研究所, 2004.

    State Administration of Science, Technology, and Industry for National Defense. Test method for properties of investment casting ceramic core[S]. Beijing: AVIC China Aero-Polytechnology Establishvient, 2004 (in Chinese).
    [27] WANG L Y, HON M H. The effect of cristobalite seed on the crystallization of fused silica based ceramic core-kinetic study[J]. Ceramics International,1995,21:187-193. doi:  10.1016/0272-8842(95)90909-3
    [28] BOGANOV A G, RUDENKO V S, BASHINA G L. Crystallization patterns and the nature of quartz galss[J]. Neorgan Materialy,1966,2(2):363-375.
  • [1] 杜培健, 王心淼, 吕庆涛, 张一帆, 陈利.  针刺石英机织布损伤表征及针刺毡纤维分布取向的变化, 复合材料学报. 2021, (): 1-11.
    [2] 宋金鹏, 高姣姣, 吕明.  颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备, 复合材料学报. 2020, 37(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20200617.003
    [3] 于晓东, 胡海晓, 贾欲明, 王敏, 曹东风.  褶皱缺陷影响L型层合板失效行为:实验和数值研究, 复合材料学报. 2020, 37(8): 1932-1943. doi: 10.13801/j.cnki.fhclxb.20191022.001
    [4] 徐洪超, 关芳, 马凤莲, 张颖, 黄世峰.  压电陶瓷表面硅钙复合膜的制备与表征, 复合材料学报. 2020, 37(5): 1114-1122. doi: 10.13801/j.cnki.fhclxb.20190909.003
    [5] 黄朋朋, 芦刚, 严青松, 郭振华, 晏玉平.  陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响, 复合材料学报. 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002
    [6] 张荣华, 史可宇, 李硕, 张一帆.  平纹编织碳纤维增强树脂复合材料离散电导率建模方法, 复合材料学报. 2020, 37(12): 1-9.
    [7] 曾伟, 丁一宁.  荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响, 复合材料学报. 2020, 37(9): 2314-2323. doi: 10.13801/j.cnki.fhclxb.20191213.001
    [8] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. 2020, 37(12): 1-18. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [9] 卫宇璇, 张明, 刘佳, 刘硕, 崔志刚.  基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能, 复合材料学报. 2020, 37(): 1-9.
    [10] 李云芳, 潘俊臣, 郎风超, 杨诗婷, 姜爱峰, 李继军.  碳纤维增强树脂复合材料细观蠕变性能, 复合材料学报. 2020, 37(8): 1861-1867. doi: 10.13801/j.cnki.fhclxb.20191118.001
    [11] 张浩, 李书欣, 王继辉, 杨斌, 颜庆岩, 吴明伟.  基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响, 复合材料学报. 2020, 37(5): 1175-1183. doi: 10.13801/j.cnki.fhclxb.20190807.001
    [12] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. 2020, 37(7): 1611-1618. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [13] 孙颖颖, 周璐瑶, 韩宇, 崔柳.  气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟, 复合材料学报. 2020, 37(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20200111.004
    [14] 肖沅谕, 高龙飞, 陈博, 李松.  石英纤维/聚酰亚胺复合材料的制备与性能, 复合材料学报. 2020, 37(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20200215.001
    [15] 钱晓明, 魏楚, 钱幺, 刘永胜, 王立晶.  空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能, 复合材料学报. 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
    [16] 张栋梁, 薛向晨, 梁宪珠, 湛利华, 杨晓波, 郑晓玲.  实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因, 复合材料学报. 2020, 37(12): 1-7.
    [17] 梅生启, 唐广, 杨斌, 王元丰.  基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析, 复合材料学报. 2020, 37(8): 2055-2064. doi: 10.13801/j.cnki.fhclxb.20191230.002
    [18] 蔡艳芝, 王源, 成来飞, 任璇璇, 李璇, 李阳.  CNT纸/SiC对称梯度层状复合材料的高温电磁屏蔽性能和介电性能, 复合材料学报. 2020, 37(11): 1-12.
    [19] 王新洲, 袁朱润, 黄雅茜, 李延军, 李永成, 许斌.  毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性, 复合材料学报. 2020, 37(): 1-9.
    [20] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-07-22

目录

    /

    返回文章
    返回