留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP约束壁式钢管混凝土短柱轴压性能试验

程杰 齐玉军 谢志锦

程杰, 齐玉军, 谢志锦. GFRP约束壁式钢管混凝土短柱轴压性能试验[J]. 复合材料学报, 2020, 37(0): 1-12
引用本文: 程杰, 齐玉军, 谢志锦. GFRP约束壁式钢管混凝土短柱轴压性能试验[J]. 复合材料学报, 2020, 37(0): 1-12
Jie CHENG, Yujun QI, Zhijin XIE. Experiment on axial compression performance of GFRP-walled concrete-filled steel tube columns[J]. Acta Materiae Compositae Sinica.
Citation: Jie CHENG, Yujun QI, Zhijin XIE. Experiment on axial compression performance of GFRP-walled concrete-filled steel tube columns[J]. Acta Materiae Compositae Sinica.

GFRP约束壁式钢管混凝土短柱轴压性能试验

基金项目: 国家自然科学基金面上项目(51778286);江苏省基础研究计划(自然科学基金)面上项目(BK20171469)
详细信息
    通讯作者:

    齐玉军,博士,教授,研究方向为新材料及新型结构 Email:qiyujun@njtech.edu.cn

  • 中图分类号: TU398.9

Experiment on axial compression performance of GFRP-walled concrete-filled steel tube columns

  • 摘要: 为研究玻璃纤维增强聚合物复合材料(GFRP)约束壁式钢管混凝土矩形短柱的轴压力学性能,对1组无GFRP约束试件和2组GFRP约束试件进行静力轴压试验;根据试验结果提出壁式柱的强弱约束模型,并基于双剪统一强度理论建立GFRP约束壁式钢管混凝土柱的轴压承载力计算公式;最后建立有限元模型,将计算结果与试验对比,并进行参数化分析,研究钢材屈服强度和混凝土强度对新型壁式钢管混凝土柱轴压性能的影响。结果表明:壁式钢管混凝土柱最终因柱中混凝土压碎,钢管屈曲,试件变形过大而失效;钢材在试件第二线性段起点处开始屈服,钢材强度得到充分发挥,GFRP能有效提高构件峰值承载力但延性有所下降;理论公式计算结果与试验值吻合较好;混凝土强度以及钢材屈服强度均能有效提高承载能力,且钢材屈服强度对承载力的影响明显大于混凝土强度的影响。
  • 图  1  壁式柱典型构造

    Figure  1.  Typical structure of wall column

    图  2  试件几何尺寸及构造

    Figure  2.  Geometrical dimensions and structure of the specimens

    图  3  GFRP约束壁式钢管混凝土柱轴压试验加载装置

    Figure  3.  Axial compressive test setup of GFRP-walled concrete-filled steel tube columns

    图  4  试验柱测点布置

    Figure  4.  Arrangement of measuring points for tested columns

    图  5  C30-G0-1的破坏过程

    Figure  5.  Failure process of C30-G0-1

    图  6  C30-G2-1的破坏过程

    Figure  6.  Failure process of C30-G2-1

    图  7  GFRP约束壁式钢管混凝土柱轴向荷载-位移曲线

    Figure  7.  Axial load-deformation curves of GFRP-walled concrete-filled steel tube columns

    图  8  典型轴向荷载-位移曲线

    Figure  8.  Typical curves of axial load-displacement

    图  9  钢管截面应力-应变曲线

    Figure  9.  Stress-strain curves of steel pipe section

    图  10  GFRP约束壁式钢管混凝土柱强弱约束分布

    Figure  10.  Distribution of strong and weak constraints of GFRP-walled concrete-filled steel tube columns

    图  11  截面受力示意图

    Figure  11.  Schematic diagram of cross-section force

    图  12  GFRP约束壁式钢管混凝土柱模型

    Figure  12.  GFRP-confined steel reinforced concrete column model

    图  13  GFRP约束壁式钢管混凝土短柱荷载-位移曲线对比

    Figure  13.  Comparison of load-displacement curves of GFRP-walled concrete-filled steel tube columns

    图  14  不同钢材、混凝土强度的GFRP约束壁式钢管混凝土短柱荷载-位移曲线

    Figure  14.  Load-displacement curves of GFRP-walled concrete-filled steel tube columns with different steel and concrete strengths

    表  1  GFRP约束壁式钢管混凝土柱参数

    Table  1.   Parameters of GFRP-walled concrete-filled steel tube columns

    Numberb×h×L/mmt/mmd/mmRc/mmFiber layer
    C30-G0-1 100×200×600 5 5 15 0
    C30-G0-2 100×200×600 5 5 15 0
    C30-G2-1 100×200×600 5 5 15 2
    C30-G2-2 100×200×600 5 5 15 2
    C30-G4-1 100×200×600 5 5 15 4
    C30-G4-2 100×200×600 5 5 15 4
    Notes: C stands for concrete, the number stands for the concrete grade; G stands for GFRP, the numbers are the number of package layers; the numbers 1 and 2 stand for two different test pieces. B—Length; h—Width; L—Height; t—Wall thickness; d—Thickness of the separator; Rc—Radius of the chamfer.
    下载: 导出CSV

    表  2  钢材和混凝土的材料力学性能

    Table  2.   Material mechanical properties of steel and concrete

    Material${f_{\rm{y}}}/{\rm{MPa}}$$E/{\rm{GPa}}$${f_{{\rm{cu}}}}/{\rm{MPa}}$
    Concrete - - 32.4
    Steel plate 251 196 -
    Notes: fy—Yield strength; E—Tensile modulus; fcu—Cube compressive strength.
    下载: 导出CSV

    表  3  GFRP布的材料力学性能

    Table  3.   Mechanical properties of GFRP

    Material${\sigma _{\rm{b}}}/{\rm{MPa}}$$E/{\rm{GPa}}$
    GFRP 537.4 28.7
    Notes: ${\sigma _{\rm{b}}}$—Tensile strength.
    下载: 导出CSV

    表  4  主要试验结果

    Table  4.   Main test results

    Number${N_{\rm{p}}}$/kN${N_{{\rm{p1}}}}$/kNI/%
    C30- G0-1 1480 1477 -
    C30- G0-2 1475
    C30- G2-1 1691 1692 15
    C30- G2-2 1708
    C30- G4-1 1 877 1 878 27
    C30- G4-2 1 879
    Notes: Np—Peak load; Np1—Average value of the peak load; I—Increment of Np1.
    下载: 导出CSV

    表  5  GFRP约束壁式钢管混凝土柱延性系数

    Table  5.   Ductility coefficients of GFRP-walled concrete-filled steel tube columns

    Number${e_{\rm{u}}}$/mm${e_{\rm{y}}}$/mm$\mu $$\overline \mu $
    C30-G0-1 - 5.12 - 11.53
    C30-G0-2 60.11 5.08 11.53
    C30-G2-1 58.76 5.71 10.29 10.97
    C30-G2-2 65.64 5.64 11.64
    C30-G4-1 56.09 6.15 9.12 10.53
    C30-G4-2 60.27 5.21 11.57
    Notes: eu—Longitudinal displacement corresponding to the peak load; ey—Longitudinal displacement corresponding to the yield bearing capacity; $\mu $—Ductility coefficient;$\overline \mu $—Average ductility coefficient of each group.
    下载: 导出CSV

    表  6  GFRP约束壁式钢管混凝土柱承载力计算值与试验值对比

    Table  6.   Comparison of calculation and test value of bearing capacity of GFRP-walled concrete-filled steel tube columns

    Number${\varepsilon _{\rm{v}}}$/10−6${t_{\rm{f}}}$/mm${A_{\rm{s}}}$/mm2${A_{\rm{c}}}$/mm2${N_{\rm{p}}}$/kN${N_{{\rm{pre}}}}$/kN${N_{\rm{p}}}/{N_{{\rm{pre}}}}$${\overline X _1}$
    C30- G0-1 - 0 2957 16336 1480 −1393 - 1.06
    C30- G0-2 - 1475 1.06
    C30- G2-1 4968 1.2 1691 1568 1.07 1.09
    C30- G2-2 6080 1708 1550 1.10
    C30- G4-1 10672 2.4 1 877 1672 1.12 1.12
    C30- G4-2 10700 1 879 1684 1.12
    $\overline X $ - - - - - - 1.09
    ${\sigma _S}$ - - - - - - 0.028
    Notes: εv—Measured value of the high-circumferential strain of the corresponding column when GFRP breaks; tf—Thickness of GFRP; As—Effective cross-sectional area of the steel tube; Ac—Effective cross-sectional area of the concrete; Np—Peak load; Npre—Theoretically calculated value of peak load; Np / Npre—Ratio of the test value and the calculated value;${\overline X _1}$—Average ratio of each group;$\overline X $—Mean of the ratio;${\sigma _{\rm{S}}}$—Standard deviation of the ratio.
    下载: 导出CSV

    表  7  塑性损伤参数取值

    Table  7.   Concrete damaged plasticity parameter values

    $\psi $$\varepsilon $${\sigma _{{\rm{bo}}}}/{\sigma _{{\rm{co}}}}$${K_{\rm{c}}}$$\mu $
    30 0.1 1.16 0.6667 0.005
    Notes: $\psi $—Expansion angle; $\varepsilon $—Eccentricity; ${\sigma _{{\rm{bo}}}}/{\sigma _{{\rm{co}}}}$—Ratio of the biaxial compressive strength to the uniaxial compressive ultimate strength value; ${K_{\rm{c}}}$—Ratio of the invariable stress; $\mu $—Viscous parameter.
    下载: 导出CSV

    表  8  GFRP约束壁式钢管混凝土短柱有限元结果与试验对比

    Table  8.   Comparison of finite element results and test results of GFRP-walled concrete-filled steel tube columns

    NumberFiber layer${N_{{\rm{p1}}}}$/kN${N_{{\rm{Aba}}}}$/kN${N_{{\rm{p1}}}}$/${N_{{\rm{Aba}}}}$
    C30-G0 0 1477 1516 0.97
    C30-G2 2 1692 1747 0.97
    C30-G4 4 1 878 1 981 0.95
    Notes: Np1—Average value of the peak load; NAba—Peak load of the finite element simulation; Np1 / NAba—Ratio of the measured peak load to the finite element simulated peak load.
    下载: 导出CSV

    表  9  GFRP约束壁式钢管混凝土短柱模拟试件几何尺寸与材料强度

    Table  9.   Geometric dimensions and material strength of simulated specimens of GFRP-walled concrete-filled steel tube columns

    Numberfcu/MPafy/MPa
    TS-235 -G2 30 235
    TS-345-G2 30 345
    TS-420-G2 30 420
    TS-460-G2 30 460
    TC-C30-G2 30 235
    TC-C40-G2 40 235
    TC-C50-G2 50 235
    TC-C60-G2 60 235
    Notes: T in the specimen number means test; S means steel; C means concrete; G means GFRP; the numbers behind indicate the corresponding labels and types of materials; fcu—Concrete strength; fy—Steel yield strength.
    下载: 导出CSV

    表  10  不同钢材屈服强度有限元模拟

    Table  10.   The simulated results of GFRP WCFT with different yield strength of steels

    Numberfy/MPaNy/kNNp/kNI1/%
    TS-235 -G2 235 1516 1767 /
    TS-345-G2 345 1 817 2572 45.55
    TS-420-G2 420 1 997 2845 61.01
    TS-460-G2 460 2084 3009 70.29
    Notes: Ny —Yield load; Np —Peak load; I1—Increment of Np.
    下载: 导出CSV

    表  11  不同混凝土强度的GFRP约束壁式钢管混凝土短柱有限元模拟结果

    Table  11.   Simulated results of GFRP-walled concrete-filled steel tube columns with different strengths of concrete

    Numberfy/MPaNy/kNNp/kNI1/%
    TC-C30-G2 30 1516 1767 -
    TC-C40-G2 40 1563 1 880 6.40
    TC-C50-G2 50 1598 1 970 11.45
    TC-C60-G2 60 1614 2083 17.89
    下载: 导出CSV
  • [1] 魏巍. 圆端形钢管混凝土构件偏压力学性能研究[D]. 武汉理工大学, 2019.

    WEI Wei. Research on eccentric compressive behavior of round-ended concrete-filled steel tubular members[D]. Wuhan University of Technology, 2019 (in Chinese).
    [2] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(01):1-13.

    HAO Jiping, SUN Xiaoling, XUE Qiang, et al. Research and application of green prefabricated steel structure building system[J]. Engineering Mechanics,2017,34(01):1-13(in Chinese).
    [3] 孙晓岭, 郝际平, 薛强, 等. 壁式钢管混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2018, 39(06):92-101.

    SUN Xiaoling, HAO Jiping, XUE Qiang, et al. Experimental study on seismic performance of walled concrete-filled steel tubular columns[J]. Journal of Building Structures,2018,39(06):92-101(in Chinese).
    [4] 杜颜胜. 高强钢矩形钢管混凝土柱理论分析及试验研究[D]. 天津大学, 2017.

    DU Yansheng. Theoretical analysis and experimental study on rectangular concrete-filled steel tube columns using high-strength steel[D]. Tianjin University, 2017 (in Chinese).
    [5] 王灿灿, 夏之罡, 叶尹, 等. 焊缝质量对钢管混凝土柱影响研究[J]. 低温建筑技术, 2013, 35(07):69-71.

    WANG Cancan, XIA Zhigang, YE Yin, et al. Research on the influence of weld quality on concrete-filled steel tube columns[J]. Low Temperature Architecture Technology,2013,35(07):69-71(in Chinese).
    [6] 颜燕祥, 徐礼华, 蔡恒, 等. 高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J/OL]. 建筑结构学报, 2019(12): 128-137[2019-12-21].

    YAN Yanxiang, XU Lihua, CAI Heng, et al. Calculation methods of axial bearing capacity of short square UHPC filled high strength steel tubular columns[J/OL]. Journal of Building Structures, 2019 (12): 128-137 [2019-12 -21] (in Chinese).
    [7] 李晓霞. 倒角半径对FRP加固混凝土柱力学性能影响的试验研究[J]. 玻璃钢/复合材料, 2012, 4:19-22.

    LI Xiaoxia. Experimental study on mechanical behaviour of FRP-strengthend reinforced concrete columns based on the corner radius[J]. Fiber Reinforced Plastics/Composites,2012,4:19-22(in Chinese).
    [8] XIAO Y, HE W H, CHOI K K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering,2005,131(3):488-497. doi:  10.1061/(ASCE)0733-9445(2005)131:3(488)
    [9] 潘毅, 吴晓飞, 郭瑞, 等. 有初应力的FRP约束混凝土圆柱应力—应变分析型模型[J]. 中国铁道科学, 2017, 38(05):30-36.

    PAN Yi, WU Xiaofei, GUO Rui, et al. Stress-strain analysis model of FRP confined concrete cylinder with initial stress[J]. China Railway Science,2017,38(05):30-36(in Chinese).
    [10] 朱春阳, 赵颖华, 李晓飞. FRP-钢管-混凝土构件抗震性能试验研究[J]. 复合材料学报, 2013, 030(001):180-186.

    ZHU Chunyang, ZHAO Yinghua, LI Xiaofei. Experimental study on seismic property of concrete filled FRP- steel tube[J]. Acta Materiae Compositae Sinica,2013,030(001):180-186(in Chinese).
    [11] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese).
    [12] 全国钢标准化技术委员会. 金属材料拉伸试验第1部分: 室温试验方法GB/T 228.1-2010[S]. 北京: 中国标准出版社, 2011.

    Technical Committee on Steel of Standardization Committee of China. Metallic materials-Tensile testing-Part 1: Method of test at room temperature GB/T 228.1-2010[S]. Beijing: Standards Press of China, 2011 (in Chinese).
    [13] American Society of Testing Materials. ASTM D3039 Standard test method for tensile properties of polymer matrix composite materials[S]. American: ASTM standards, 2002.
    [14] American Society of Testing Materials. ASTM D3410 Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading[S]. American: ASTM standards, 2002.
    [15] 陈梦成, 刘京剑, 黄宏. 钢管再生矿渣混凝土轴压短柱试验研究[J]. 建筑结构学报, 2013, 34(2013S1):281-287.

    CHEN Mengcheng, LIU Jingjian, HUANG Hong. Experimental study on recycled slag aggregate concrete-filled steel tubular columns under axial compression[J]. Journal of Building Structures,2013,34(2013S1):281-287(in Chinese).
    [16] 张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Yirui, WEI Yang, BAI Jiawen, et al. Models for predicting axial compression behavior of FRP- steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [17] 张忠杰, 周新刚, 宋振宇, 等. 矩形薄壁钢管混凝土短柱轴心受压性能试验研究[J]. 烟台大学学报(自然科学与工程版), 2020, 33(02):218-224.

    ZHANG Zhongjie, ZHOU Xingang, SONG Zhenyu, et al. Experimental study on axially compressive behavior of rectangular concrete-filled thin-walled steel tube short column[J]. Journal of Yantai University (Natural Science and Engineering Edition),2020,33(02):218-224(in Chinese).
    [18] WANG X X, QI Y J, SUN Y L, et al. Compressive behavior of composite concrete columns with encased FRP confined concrete cores[J]. Sensors (Basel, Switzerland),2019.
    [19] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(03):36-46.

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics,2017,34(03):36-46(in Chinese).
    [20] MANDER J A B, PRIESTLEY M J N. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. doi:  10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [21] 潘毅, 曹双寅, 敬登虎, 等. 负载下碳纤维布约束混凝土方柱轴压应力-应变关系的试验研究与分析[J]. 土木工程学报, 2009, 42(1):2329-29.

    PAN Yi, CAO Shuangyin, JING Denghu, et al. Test and analysis of the axial stress-strain relationship of square section concrete columns confined by CFRP under preload[J]. China Civil Engineering Journal,2009,42(1):2329-29(in Chinese).
    [22] 郭红香, 赵均海, 魏雪英. 方钢管混凝土轴压短柱承载力分析[J]. 工业建筑, 2008(03):9+14-16.

    GUO Hongxiang, ZHAO Junhai, WEI Xueying. Analysis of bearing capacity of concrete-filled square steel tube column under axial load[J]. Industrial Construction,2008(03):9+14-16(in Chinese).
    [23] 王娟, 赵均海, 吴赛, 等. 基于统一强度理论的矩形钢管混凝土短柱轴压承载力计算[J]. 建筑科学与工程学报, 2011, 28(03):88-92.

    WANG Juan, ZHAO Junhai, WU Sai, et al. Calculation of axial bearing capacity of rectangular concrete-filled steel tube short column based on twin shear unified strength theory[J]. Journal of Architecture and Civil Engineering,2011,28(03):88-92(in Chinese).
    [24] 陶毅, 叶思君, 陈建飞. 内置约束芯柱的方钢管混凝土组合柱轴压承载力分析[J/OL]. 建筑结构学报: 1-12[2020-07-31].

    TAO Yi, YE Sijun, CHEN Jianfei. Analysis of Axial Compression Bearing Capacity of Concrete-Filled Square Steel Tubular Columns with Built-in Restraint Cores[J/OL]. Journal of Building Structures: 1-12[2020-07-31] (in Chinese).
    [25] 魏锦, 赵均海, 刘彦东, 等. 钢管混凝土轴压短柱的极限承载力分析[J]. 建筑科学与工程学报, 2008(03):81-86.

    WEI Jin, ZHAO Junhai, LIU Yandong, et al. Analysis of the ultimate bearing capacity of concrete-filled steel tubular axial compression short columns[J]. Journal of Architecture and Civil Engineering,2008(03):81-86(in Chinese).
    [26] 四川省住房和城乡建设厅. 混凝土结构加固设计规范: GB 50367-2013[S]. 北京: 中国建筑工业出版社, 2013.

    Sichuan housing and Urban Rural Development Department. Code for design of strengthening concrete structures: GB 50367-2013[S]. Beijing: China Architecture & Building Press, 2013 (in Chinese).
    [27] 中国建筑科学研究院. 混凝土结构设计规范: GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2015.

    China Academy of Building Research. Code for design of concrete structures: GB 50010-2010[S]. Beijing: China Architecture & Building Press, 2015 (in Chinese).
  • [1] 郝兆峰, 张戎令, 王起才, 祁强, 庄立普, 黄国栋.  钢管混凝土缺陷对徐变性能的影响, 复合材料学报. 2020, 37(5): 1191-1199. doi: 10.13801/j.cnki.fhclxb.20191030.001
    [2] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
    [3] 田会文, 周臻, 陆纪平, 彭振.  纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟, 复合材料学报. 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001
    [4] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. 2020, 37(7): 1611-1618. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [5] 谢波涛, 高亮, 江帅, 李梦军.  含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应, 复合材料学报. 2020, 37(11): 1-9.
    [6] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [7] 荆蓉, 张锐涛, 孟雨辰, 王彦辉, 张兴刚, 赵玉, 张用兵.  连续玻纤增强聚丙烯热塑性复合材料拉挤成型中的工艺参数, 复合材料学报. 2020, 37(): 1-8.
    [8] 吴楠, 郝旭峰, 史耀辉, 鞠博文, 钱元, 蔡登安, 周光明.  高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验, 复合材料学报. 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002
    [9] 丁一宁, 马跃, 郝晓卫.  基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响, 复合材料学报. 2020, 37(): 1-9.
    [10] 高晓东, 杨卫民, 程礼盛, 丁玉梅, 谭晶.  导电玻璃纤维及其功能复合材料研究进展, 复合材料学报. 2020, 37(): 1-10.
    [11] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [12] 王作虎, 杨菊, 崔宇强, 申书洋.  碳纤维增强树脂复合材料加固钢筋混凝土柱抗震性能的尺寸效应试验, 复合材料学报. 2020, 37(10): 1-11. doi: 10.13801/j.cnki.fhclxb.20200212.001
    [13] 任兴国, 孙靖尧, 赵中里, 黄尧, 刘颖, 吴大鸣.  超声强制浸润法制备碳纳米纸/聚合物导热复合材料, 复合材料学报. 2020, 37(8): 1841-1849. doi: 10.13801/j.cnki.fhclxb.20200214.001
    [14] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [15] 万陶磊, 常俊杰, 曾雪峰, 李媛媛.  基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像, 复合材料学报. 2020, 37(8): 1921-1931. doi: 10.13801/j.cnki.fhclxb.20191031.003
    [16] 张霓, 郑晨阳, 羡丽娜, 王连广.  玻璃纤维增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能, 复合材料学报. 2020, 37(12): 1-12.
    [17] 曹玉贵, 赵国旭, 尹亚运.  基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测, 复合材料学报. 2020, 37(): 1-6.
    [18] 徐可, 陆春华, 宣广宇, 张灵灵, 倪铭志, 刘荣桂.  混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算, 复合材料学报. 2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003
    [19] 张广泰, 曹银龙, 李瑞祥, 张路杨, 陈勇.  聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算, 复合材料学报. 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
    [20] 方圆, 于峰, 张扬, 徐琳, 王旭良.  圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算, 复合材料学报. 2020, 37(5): 1211-1220. doi: 10.13801/j.cnki.fhclxb.20190916.001
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 录用日期:  2020-08-14

目录

    /

    返回文章
    返回