留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变形钢筋/超高性能混凝土搭接黏结性能

马福栋 邓明科 孙宏哲 叶旺

马福栋, 邓明科, 孙宏哲, 等. 变形钢筋/超高性能混凝土搭接黏结性能[J]. 复合材料学报, 2021, 38(11): 3912-3924. doi: 10.13801/j.cnki.fhclxb.20201229.006
引用本文: 马福栋, 邓明科, 孙宏哲, 等. 变形钢筋/超高性能混凝土搭接黏结性能[J]. 复合材料学报, 2021, 38(11): 3912-3924. doi: 10.13801/j.cnki.fhclxb.20201229.006
MA Fudong, DENG Mingke, SUN Hongzhe, et al. Bond behavior of deformed steel bars lap-splice in ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3912-3924. doi: 10.13801/j.cnki.fhclxb.20201229.006
Citation: MA Fudong, DENG Mingke, SUN Hongzhe, et al. Bond behavior of deformed steel bars lap-splice in ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3912-3924. doi: 10.13801/j.cnki.fhclxb.20201229.006

变形钢筋/超高性能混凝土搭接黏结性能

doi: 10.13801/j.cnki.fhclxb.20201229.006
基金项目: 西安市科技创新计划项目(20191522415KYPT015JC017);国家自然科学基金(51708445)
详细信息
    通讯作者:

    邓明科,博士,教授,研究方向为高性能土木工程材料与新型结构  E-mail:dengmingke@126.com

  • 中图分类号: TU528;TU318

Bond behavior of deformed steel bars lap-splice in ultra high performance concrete

  • 摘要: 超高性能混凝土(UHPC)是一种高强度、高韧性和高耐久性的水泥基复合材料。为了研究钢筋/UHPC的搭接黏结性能,进行了21组考虑搭接长度、纤维掺量和配箍率影响的钢筋搭接对拉拔出试验,3组考虑锚固长度影响的钢筋直接拔出锚固试验;试验出现了劈裂拔出破坏和钢筋拉断破坏2种破坏模式;钢筋/UHPC平均黏结强度随钢筋埋置长度的增大而减小,随配箍率的增大而增大;钢纤维掺量的增大,有利于增大对UHPC的约束作用,增加配箍率和适当增大纤维掺量均能减小钢筋/UHPC的临界搭接长度;结合前人的试验结果,拟合得到平均锚固和搭接黏结强度计算公式及临界锚固和搭接长度计算公式,根据混凝土结构设计规范,建立了钢筋/UHPC锚固和搭接长度简化算法,计算结果较为准确。

     

  • 图  1  钢筋/超高性能混凝土(UHPC)搭接试件尺寸及制作(单位:mm)

    Figure  1.  Size and fabrication of steel bars/ultra high performance concrete (UHPC) lap-splice specimens (Unit: mm)

    图  2  试验加载装置

    Figure  2.  Test loading devices

    图  3  钢筋/UHPC锚固或搭接试件极限荷载-埋长曲线

    Figure  3.  Ultimate load versus embedment length curves of anchorage and pull out lap-splice specimens of steel bars in UHPC

    图  4  钢筋/UHPC锚固或搭接试件破坏形态

    Figure  4.  Failure patterns of anchorage and lap-splice specimens of steel bars in UHPC

    图  5  钢筋/UHPC平均黏结强度与埋置长度关系

    Figure  5.  Average bond strength versus embedded length of steel bars/UHPC

    图  6  钢筋/UHPC平均黏结强度与钢纤维体积分数关系

    Figure  6.  Average bond strength versus fibers fraction of steel bars/UHPC

    图  7  钢筋/UHPC搭接试件箍筋应变-荷载曲线

    Figure  7.  Stirrup strains versus loads curves of steel bars lap-splice UHPC specimens

    图  8  钢筋/UHPC平均黏结强度与配箍率关系

    Figure  8.  Average bond strength versus stirrup ratio curves of steel bars/UHPC

    图  9  钢筋搭接强度拟合公式计算值与试验值对比

    Figure  9.  Comparison between the calculated value and the test value of the fitting formula of the steel lap-splice strength

    图  10  不同类型钢筋/UHPC锚固或搭接试件的临界长度计算值与试验值

    Figure  10.  Test and calculation values of critical length for different types of anchorage and pull out lap splice steel bars/UHPC specimens

    表  1  钢筋锚固和搭接钢筋/UHPC试件参数及试验结果

    Table  1.   Parameters and test results of anchorage and lap-splice steel bars/UHPC specimens

    NumberNotationVf/%${\rho _{{\rm{sv}}}}$/%Lfcu/MPafc/MPaPy/kNPs/kNPu/kNτmt/MPaFailure mode
    1 A-2-0-3d 2 0 3d 117.1 103.6 190.4 197.6 33.6 SPF
    2 A-2-0-5d 5d 218.6 265.2 269.5 27.5 SPF
    3 A-2-0-7d 7d 220.4 284.6 298.1 21.7 SPF
    4 LS-2-0-3d 2 0 3d 117.1 103.6 111.9 130.2 22.1 SPF
    5 LS-2-0-5d 5d 143.4 171.8 17.5 SPF
    6 LS-2-0-7d 7d 173.3 208.3 15.1 SPF
    7 LS-2-0-8d 2 0 8d 110.1 100.9 219.1 223.4 234.2 14.9 SPF
    8 LS-2-0-10d 10d 215.6 246.9 266.0 13.6 SPF
    9 LS-2-0-12d 12d 217.6 272.8 293.7 12.5 SPF
    10 LS-3-0-8d 3 0 8d 116.6 105.5 217.2 245.8 253.2 16.1 SPF
    11 LS-3-0-10d 10d 219.1 265.7 284.8 14.5 SPF
    12 LS-3-0-12d 12d 216.3 285.9 298.8 12.7 RF
    13 LS-4-0-6d 4 0 6d 112 102 217.1 201.3 224.0 19.0 SPF
    14 LS-4-0-8d 8d 215.3 244.9 250.1 16.0 SPF
    15 LS-4-0-10d 10d 217.1 276.3 282.2 14.4 SPF
    16 LS-2-0.67-6d 2 0.67 6d 110.1 100.9 218.2 164.9 236.6 20.1 SPF
    17 LS-2-0.67-8d 8d 218.4 180.5 243.5 15.5 SPF
    18 LS-2-0.67-10d 10d 215.8 201.3 292.9 14.94 SPF
    19 LS-2-1.35-4d 2 1.35 4d 110.1 100.9 122.6 195.3 24.9 SPF
    20 LS-2-1.35-6d 6d 218.8 146.6 244.3 20.7 SPF
    21 LS-2-1.35-8d 8d 219.4 202.4 304.2 19.4 RF
    22 LS-2-2.25-4d 2 2.25 4d 110.1 100.9 128.1 206.0 26.2 SPF
    23 LS-2-2.25-6d 6d 219.4 167.7 257.9 21.9 SPF
    24 LS-2-2.25-8d 8d 214.5 216.0 302.8 19.3 RF
    Notes: d—Steel bar diameter; Vf—Fibre volume fraction; ρsv—Hoop ratio; L—Embedment length; fcu—Compressive strength of cube; fc—Compressive strength of prism; Py, Ps and Pu—Yield, slippage and peak loads in the test, respectively; τmt—Mean bond strength measured in the test; SPF and RF represent the splitting pull-out failure and steel bar rupture failure, respectively. The “A” and “LS” in notation system—Anchorage specimen and lap-splice specimen, respectively. The figures in the second, third and fourth symbol—Fibre volume fraction (%), stirrup ratio (%) and embedment length, respectively. For example, the notation of “LS-2-0-3d”—Splice specimen with 2% of fibre volume fraction, 0% of stirrup ratio and 3 bar diameters embedment.
    下载: 导出CSV

    表  2  UHPC配合比

    Table  2.   Mix proportions of UHPC

    NumberWater to
    binder ratio
    CementFly
    ash
    Silica
    fume
    Mineral
    powder
    Quartz
    sand
    SuperplasticizerVolume fraction of
    steel fiber Vf
    1 0.18 1.00 0.30 0.30 0.30 1.3 0.05 0.02
    2 0.18 1.00 0.30 0.30 0.30 1.3 0.05 0.03
    3 0.18 1.00 0.30 0.30 0.30 1.3 0.05 0.04
    下载: 导出CSV

    表  3  钢筋力学性能

    Table  3.   Mechanical properties of steel bars

    Diameter/mmStrength gradeYield strength/MPaUltimate strength/MPa
    25 HRB400 447 611
    18 HRB400 436 608
    8 HPB300 364 540
    下载: 导出CSV

    表  4  钢筋/UHPC锚固和对拉拔出搭接试件试验数据

    Table  4.   Test data of anchorage specimens and pull out lap-splice specimens of steel bars in UHPC

    ReferenceNotationd/mmL/mmc/mmρsvfcu/MPaVfτut/MPa
    Anchorage specimen [15] φ14-50 14 50 68 0 147.78 0.023 37.07
    φ15-50 16 50 67 0 147.78 0.023 33.28
    φ16-50 18 50 66 0 147.78 0.023 29.87
    φ17-50 18 75 66 0 147.78 0.023 28.94
    [16] H1-LZ-8-24 8 24 71 0 121.77 0.02 55.3
    H1-LZ-8-32 8 32 71 0 121.77 0.02 45.7
    H1-LZ-10-30 10 30 70 0 121.77 0.02 46.1
    H1-LZ-10-40 10 40 70 0 121.77 0.02 42.9
    H2-LZ-16-48 16 48 67 0 132.39 0.02 52.7
    H2-LZ-16-64 16 64 67 0 132.39 0.02 42.9
    H2-LZ-16-80 16 80 67 0 132.39 0.02 34.1
    H2-LZ-18-54 18 54 66 0 132.39 0.02 55
    H2-LZ-18-72 18 72 66 0 132.39 0.02 42.3
    H3-LZ-6-18 6 18 72 0 153.09 0.03 51.1
    H3-LZ-8-24 8 24 71 0 153.09 0.03 70.5
    H3-LZ-8-32 8 32 71 0 153.09 0.03 52.8
    H3-LZ-10-30 10 30 70 0 153.09 0.03 62.2
    H2-NZ-16-12 16 48 12 0 132.39 0.02 31.1
    H2-NZ-16-22 16 48 22 0 132.39 0.02 36
    H2-NZ-16-32 16 48 32 0 132.39 0.02 41.9
    H2-NZ-16-42 16 48 42 0 132.39 0.02 47.7
    H2-NZ-16-52 16 48 52 0 132.39 0.02 48.8
    H2-NZ-16-62 16 48 62 0 132.39 0.02 52.8
    H3-LP-8-10 8 40 10 0 153.09 0.03 29.9
    H3-LP-8-15 8 40 15 0 153.09 0.03 29.1
    [17] P0.0 16 50 67 0 79.81 0 29.7
    P0.5 16 50 67 0 92.27 0.005 31.18
    P1.0 16 50 67 0 114.30 0.01 32.05
    P1.5 16 50 67 0 117.02 0.015 36.72
    P2.0 16 50 67 0 128.58 0.02 38.12
    Lap-splice specimen [23] L100-R100-D1-S0 20 100 45 0 96.03 0.02 17.14
    L100-R100-D1-S34 20 100 45 0.0034 96.03 0.02 18
    L100-R100-D1-S75 20 100 45 0.0075 96.03 0.02 19.03
    L100-R120-D1-S0 20 100 45 0 117.36 0.02 18.95
    L100-R120-D1-S34 20 100 45 0.0034 117.36 0.02 19.9
    L100-R120-D1-S75 20 100 45 0.0075 117.36 0.02 21.04
    L100-R150-D1-S0 20 100 45 0 141.39 0.02 20.36
    L100-R150-D1-S34 20 100 45 0.0034 141.39 0.02 22.12
    L100-R150-D1-S75 20 100 45 0.0075 141.39 0.02 23.35
    L150-R100-D1-S34 20 150 45 0.0034 96.03 0.02 17.52
    L150-R120-D1-S34 20 150 45 0.0034 96.03 0.02 19.18
    L200-R100-D1-S34 20 200 45 0.0034 96.03 0.02 14.75
    L200-R100-D1-S34 20 200 45 0.0034 96.03 0.02 13.74
    Notes: d—Steel bar diameter; L—Embedment length; c—Thickness of UHPC cover; ρsv—Hoop ratio; fcu—Compressive strength of cube; Vf—Fibre volume fraction; τut—Test value of ultimate average bond strength.
    下载: 导出CSV

    表  5  钢筋/UHPC搭接梁式试件黏结强度拟合公式验证

    Table  5.   Verification of the fitting formula for lap-splice bond strength of beam lap-splice steel bars/UHPC specimens

    ReferenceNotationd/mmL/mmc/mmfc/MPaVfτut/MPaτuf/MPaτuf/τut
    Beam lap-splice specimen [6] 1-12-25-L 25 300 45 130 0.03 10.8 13.40 1.26
    2-12-25-L 25 300 45 130 0.03 9.8 13.40 1.39
    1-18-25-L 25 450 45 130 0.03 6.8 11.98 1.96
    1-12-35-L 35 420 45 130 0.03 9.8 11.32 1.15
    1-18-35-L 35 630 45 130 0.03 6.11 10.12 1.81
    1-6-25-L 25 150 45 130 0.03 19.6 17.67 0.74
    1-6-25-L1 25 150 45 130 0.03 19.6 17.67 0.74
    1-12-25-L1 25 300 45 130 0.03 9.8 13.40 1.39
    1-6-35-L 35 210 45 130 0.03 16.23 14.92 0.74
    1-6-35-L½ 35 210 45 130 0.03 12.32 14.92 0.97
    1-12-35-L½ 35 420 45 130 0.03 9.16 11.32 1.24
    [18] 25-12-L-1% 25 300 25 125 0.01 9.5 8.00 1.04
    25-12-L-2% 25 300 25 124 0.02 10.4 8.94 0.94
    25-12-L-3% 25 300 25 114 0.03 10.5 9.51 0.90
    25-12-R-3% 25 300 25 114 0.03 10 9.51 0.94
    35-18-L-3% 35 630 35 114 0.03 8.2 8.50 1.13
    35-18-R-3% 35 630 35 114 0.03 7.2 8.50 1.28
    Average value 1.15
    Variation coefficient 0.29
    Notes: fc—Uniaxial compressive strength; τut—Test value of ultimate average bond strength; τuf—Value of ultimate average bond strength calculated by the Eq. (3).
    下载: 导出CSV

    表  6  钢筋/UHPC锚固和搭接长度试验值与计算值

    Table  6.   Test values and calculated values of development length and splice length of steel bars/UHPC

    TypeMinimum anchorage or lap length of steel bar yieldMinimum anchorage or lap length of steel bar rupture
    lsyACIlsyGBlsyslsyflsytlsuACIlsuGBlsuslsuflsut
    Anchorage specimen 28.6d 11.2d 5.3d 3.7d 3.6d 39.1d 15.3d 7.2d 6.6d 7.1d
    2.25vol% hoops 20.9d 17.9d 10.5d 5.8d 4.5d 28.6d 24.4d 14.4d 10.1d 7.6d
    1.35vol% hoops 20.9d 17.9d 10.5d 6.4d 4.9d 28.6d 24.4d 14.4d 11.0d 8.1d
    0.67vol% hoops 20.9d 17.9d 10.5d 7.1d 4.8d 28.6d 24.4d 14.4d 11.9d 10.6d
    4vol% fibers 28.9d 17.6d 10.6d 6.5d 5.8d 39.4d 24.0d 14.5d 11.1d 13.2d
    3vol% fibers 28.3d 16.4d 10.4d 7.5d 38.7d 22.4d 14.3d 12.5d 12.1d
    2vol% fibers 29.0d 17.9d 10.5d 9.3d 7.3d 39.7d 24.4d 14.4d 15.0d 12.6d
    Notes: lsyACI, lsyGB, lsys and lsyf—Minimum anchorage or lap length of steel bar yield calculated by the ACI 318—19[27], GB 50010—2010[26], simplified algorithm and fitting formula, respectively; lsuACI, lsuGB, lsus, and lsuf—Minimum anchorage or lap length of steel bar rupture calculated by the ACI 318—19[27], GB 50010—2010[26], simplified algorithm and fitting formula, respectively; lsyt—Test value of minimum anchorage or lap length of steel bar yield; lsut—Test value of minimum anchorage or lap length of steel bar rupture.
    下载: 导出CSV

    表  7  受拉钢筋/UHPC搭接长度[27]

    Table  7.   Lap splice lengths of deformed steel bars/UHPC in tension[27]

    As,p/As,rMaximum percent of As spliced
    within required lap length/%
    Splice typeLap splice lengths ls
    ≥2 50 A Greater of: 1.0ld and 304.8 mm
    100 B Greater of: 1.3ld and 304.8 mm
    <2 All cases B
    Note: As,p/As,r—Ratio of area of reinforcement provided to area of reinforcement required by analysis at splice location.
    下载: 导出CSV
  • [1] 中国国家标准化管理委员会. 活性粉末混凝土: CB/T 31387—2015[S]. 中国标准出版社, 2015

    National Standardization Administration of China. Reactive powder concrete: CB/T 31387—2015[S]. China Standard Press, 2015 (in Chinese).
    [2] YUAN J, GRAYBEAL B. Bond of reinforcement in ultra-high-performance concrete[J]. ACI Structural Journal,2015,112(6):851.
    [3] GRAYBEAL B. Design and construction of field-cast UHPC connections[R]. United States: Federal Highway Administration, 2014.
    [4] SHAFIEIFAR M, FARZAD M, AZIZINAMINI A. Alternative ABC connection utilizing UHPC[R]. Washington DC, United States: Transportation Research Board 96th Annual Meeting, 2017.
    [5] AARUP B, JENSEN B C. Bond properties of high-strength fiber reinforced concrete[J]. Special Publication,1998,180:459-472.
    [6] DAGENAIS M A, MASSICOTTE B. Tension lap splices strengthened with ultrahigh-performance fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering,2014,27(7):04014206.
    [7] GRAYBEAL B. Behavior of field-cast ultra-high performance concrete bridge deck connections under cyclic and static structural loading[R]. US: Department of Transportation, 2010.
    [8] SWENTY M, GRAYBEAL B. Influence of differential deflection on staged construction deck-level connections[R]. US: Department of Transportation, 2012.
    [9] HOLSCHEMACHER K, WEIBE D, KLOTZ S. Bond of reinforcement in ultra high strength concrete[C]//SCHMIDT M, FEHLING E, GEISENHANSLÜKE C. Proceedings of the International Symposium on Ultra High Performance Concrete, 2004: 375–387.
    [10] JUNGWIRTH J, MUTTONI A. Structural behavior of tension memebers in UHPC[R]. Kassel, Germany: Proceedings of the International Symposium on Ultra High Performance Concrete, 2004.
    [11] ALKAYSI M, El-TAWIL S. Factors affecting bond development between ultra high performance concrete (UHPC) and steel bar reinforcement[J]. Construction and Building Materials,2017,144:412-422. doi: 10.1016/j.conbuildmat.2017.03.091
    [12] GRAYBEAL B. Bond behavior of reinforcing steel in ultra high performance concrete[R]. United States: Federal Highway Administration, 2014.
    [13] BAE B I, CHOI H K, CHOI C S. Bond stress between conventional reinforcement and steel fibre reinforced reactive powder concrete[J]. Construction and Building Materials,2016,112:825-835. doi: 10.1016/j.conbuildmat.2016.02.118
    [14] SALEEM M A, MIRMIRAN A, XIA J, et al. Development length of high-strength steel rebar in ultrahigh performance concrete[J]. Journal of Materials in Civil Engineering,2012,25(8):991-998.
    [15] 安明喆, 张盟. 变形钢筋与活性粉末混凝土的黏结性能试验研究[J]. 中国铁道科学, 2007, 28(2):50-54.

    AN M Z, ZHANG M. Experimental research of bond capability between deformed bars and reactive powder concrete[J]. China Railway Science,2007,28(2):50-54(in Chinese).
    [16] 邓宗才, 袁常兴. 高强钢筋与活性粉末混凝土黏结性能的试验研究[J]. 土木工程学报, 2014, 47(3):69-78.

    DENG Z C, YUAN C X. Experimental study on bond capability between high strength rebar and reactive powder concrete[J]. China Civil Engineering Journal,2014,47(3):69-78(in Chinese).
    [17] 贾方方. 钢筋与活性粉末混凝土黏结性能的试验研究[D]. 北京: 北京交通大学, 2013.

    JIA F F, Experimental study on bonding properties of steel bars and reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2013 (in Chinese).
    [18] DAGENAIS M A, MASSICOTTE B. Cyclic behavior of lap splices strengthened with ultrahigh performance fiber-reinforced concrete[J]. Journal of Structural Engineering,2016,143(2):04016163.
    [19] Al-QURAISHI H, Al-FARTTOOSI M, ABDUL K R. Tension lap splice length of reinforcing bars embedded in reactive powder concrete (RPC)[J]. Structures,2019,19:362-368. doi: 10.1016/j.istruc.2018.12.011
    [20] 徐有邻, 汪洪, 沈文都. 钢筋搭接传力性能的试验研究[J]. 建筑结构, 1993(4):20-24.

    XU Youlin, WANG Hong, SHEN Wendu. Experimental study on the force transmission performance of steel bars[J]. Building Structure,1993(4):20-24(in Chinese).
    [21] GRAYBEAL B. Splice Length of prestressing strand in field-cast ultra-high performance concrete connections[R]. No. FHWA-HRT-14-041, 2014.
    [22] LAGIER F, MASSICOTTE B, CHARRON J P. Experimental investigation of bond stress distribution and bond strength in unconfined UHPFRC lap splices under direct tension[J]. Cement and Concrete Composites,2016,74:26-38. doi: 10.1016/j.cemconcomp.2016.08.004
    [23] 方志, 陈潇, 张门哲, 等. 活性粉末混凝土中带肋钢筋搭接性能试验研究[J]. 土木工程学报, 2019, 52(3):20-28.

    FANG Z, CHEN X, ZHANG M Z, et al. Experimental study on bond capability between high strength rebar and reactive powder concrete[J]. Journal of Civil Engineering,2019,52(3):20-28(in Chinese).
    [24] CHAO S H, NAAMAN A E, PARRA-MONTESINOS G J. Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites[J]. ACI Structural Journal,2009,106(6):897.
    [25] LI X, WU Z, ZHENG J, et al. Effect of loading rate on bond behavior of deformed reinforcing bars in concrete under biaxial lateral pressures[J]. Journal of Structural Engineering,2016,142(6):04016027. doi: 10.1061/(ASCE)ST.1943-541X.0001479
    [26] 中国国家标准化管理委员会. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.

    Standardization Administration of China. Concrete structure design specification: GB 50010—2010[S]. Beijing: China Building Industry Press, 2011 (in Chinese)
    [27] COMMITTEE A. Building code requirements for structural concrete and commentary: 318M—19[S]. USA: American Concrete Institute, 2019.
    [28] AZIZINAMINI A, CHISALA M, GHOSH S K. Tension development length of reinforcing bars embedded in high-strength concrete[J]. Engineering Structures,1995,17(7):512-522. doi: 10.1016/0141-0296(95)00096-P
    [29] HAMAD B S, ITANI M S. Bond strength of reinforcement in high performance concrete: Role of silica fume, casting position, and superplasticizer dosage[J]. Materials Journal,1998,95(5):499-511.
    [30] 袁伦一. 关于钢筋搭接[J]. 重庆交通大学学报(自然科学版), 1988, 7(1):102-108.

    YUAN L Y. On lapping of bar[J]. Journal of Chongqing Jiaotong University (Natural Science Edition),1988,7(1):102-108(in Chinese).
    [31] 原海燕. 配筋活性粉末混凝土受拉性能试验研究及理论分析[D]. 北京: 北京交通大学, 2009.

    YUAN H Y. Theoretical analysis and experimental research on tensile performance of reinforced reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2009 (in Chinese).
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  1241
  • HTML全文浏览量:  630
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 录用日期:  2020-12-17
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回