留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米复合材料的降阶均匀化方法及其数值实现

鞠晓喆 朱加文 梁利华 许杨剑

鞠晓喆, 朱加文, 梁利华, 等. 石墨烯纳米复合材料的降阶均匀化方法及其数值实现[J]. 复合材料学报, 2021, 38(12): 4362-4370. doi: 10.13801/j.cnki.fhclxb.20210202.002
引用本文: 鞠晓喆, 朱加文, 梁利华, 等. 石墨烯纳米复合材料的降阶均匀化方法及其数值实现[J]. 复合材料学报, 2021, 38(12): 4362-4370. doi: 10.13801/j.cnki.fhclxb.20210202.002
JU Xiaozhe, ZHU Jiawen, LIANG Lihua, et al. Reduced order homogenization of graphene nanocomposites and its numerical implementation[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4362-4370. doi: 10.13801/j.cnki.fhclxb.20210202.002
Citation: JU Xiaozhe, ZHU Jiawen, LIANG Lihua, et al. Reduced order homogenization of graphene nanocomposites and its numerical implementation[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4362-4370. doi: 10.13801/j.cnki.fhclxb.20210202.002

石墨烯纳米复合材料的降阶均匀化方法及其数值实现

doi: 10.13801/j.cnki.fhclxb.20210202.002
基金项目: 国家自然科学基金青年科学基金(12002309);国家自然科学基金面上项目(51875523);浙江省自然科学基金探索项目(LQ21A020002)
详细信息
    通讯作者:

    许杨剑,博士,教授,研究方向为计算固体力学  E-mail:xuyangjian571@163.com

  • 中图分类号: TB332

Reduced order homogenization of graphene nanocomposites and its numerical implementation

  • 摘要: 对石墨烯纳米复合材料进行三维有限元建模通常需极其精细的网格。在考虑塑性演变的情况下,细观代表性单元体模型的计算效率极其低下。为此,基于非均匀变换场分析理论,提出了石墨烯纳米复合材料的降阶均匀化方法。首先,针对不同加载路径进行预分析,提取细观塑性应变场信息;然后对这些信息进行本征正交分解,从而得到若干个塑性模态,用作降阶模型的基函数;基于宏、细观耗散功的等效原理,导出降阶变量的本构模型。该方法的离线分析部分通过MATLAB编程实现。为了便于工程计算,在线分析部分则由商业有限元软件ABAQUS的UMAT用户子程序接口实现。基于三维算例分析,验证了所提方法的有效性。结果显示,在保证较高精度的前提下,针对三维代表性单元体计算的加速率可达103~104量级。

     

  • 图  1  宏-细观双尺度问题

    Figure  1.  Illustration of a two scale (macro-micro) problem

    L—Macro characteristic length; l—Micro characteristic length;$\overline{\varOmega } $—Macro domain; ${\varOmega } $—Micro domain; $\overline\sigma $—Macro stress tensor;$\sigma $—Micro stress tensor; $\overline\varepsilon $—Macro strain tensor; $\varepsilon $—Micro strain tensor

    图  2  石墨烯纳米复合材料的降阶均匀化流程

    Figure  2.  Flowchart of reduced order homogenization of graphene nano-composites

    图  3  石墨烯纳米复合材料代表性体积单元(RVE)建模和分析流程

    Figure  3.  Flowchart of modeling and analyzing based on representative volume element (RVE) of graphene nanocomposites

    图  4  不同GPLs含量的石墨烯纳米复合材料RVE模型

    Figure  4.  RVE models of graphene nanocomposites with different volume fractions of GPLs

    图  5  石墨烯纳米复合材料双向拉伸试验宏-细观双尺度有限元模型(FEM)

    Figure  5.  A two scale (macro-micro) finite element model (FEM) for a biaxial tensile test of a graphene nanocomposte

    图  6  石墨烯纳米复合材料塑性模态$ {\boldsymbol{\mu }}^{1} $的不同分量

    Figure  6.  Different components of plastic mode $ {\boldsymbol{\mu }}^{1} $ for graphene nanocomposites

    图  7  石墨烯纳米复合材料双向拉伸试验的力(F) -位移 (u)曲线

    Figure  7.  Force (F)-displacement (u) curve of a biaxial tension test for graphene nanocomposites

    图  8  石墨烯纳米复合材料宏观模型Mises应力云图

    Figure  8.  Contour plot of von Mises stresses for the macro model of graphene nanocomposites

    图  9  石墨烯纳米复合材料积分点A上的宏观应力-应变曲线

    Figure  9.  Macro stress-strain curves at an integration point A of graphene nanocomposites

    NTFA—Nonuniform transformation field analysis

    图  10  石墨烯纳米复合材料降阶模型和有限元模型的Mises应力比较

    Figure  10.  Comparison of Mises stress localization between reduced order model and FE model of graphene nanocomposites

    表  1  石墨烯纳米复合材料的材料属性

    Table  1.   Material properties of a graphene nanocomposite

    MaterialYoung’s modulus/GPaPoisson's ratioYield stress/MPaH/MPabc/MPa
    Matrix 70 0.3 350 1500 25 360
    GPLs 1050 0.186
    Notes: H, b and c—Material parameters in Eq.(22); GPLs—Graphene nanoplates.
    下载: 导出CSV
  • [1] LEE C, WEI X, KYSAR J, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [2] RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano,2009,3(12):3884-3890. doi: 10.1021/nn9010472
    [3] HUANG X, QI X, BOEY F, et al. Graphene-based composites[J]. Chemical Society Reviews,2012,41(2):666-686. doi: 10.1039/C1CS15078B
    [4] 杨卫. 细观力学和细观损伤力学[J]. 力学进展, 1992, 22(1):1-9. doi: 10.6052/1000-0992-1992-1-J1992-001

    YANG W. Meso-mechanics and meso-damage mechanics[J]. Advances in Mechanics,1992,22(1):1-9(in Chinese). doi: 10.6052/1000-0992-1992-1-J1992-001
    [5] GEERS M G, KOUZNETSOVA V G, MATOUŠ K, et al. Homogenization methods and multiscale modeling: Nonlinear problems[J]. Encyclopedia of Computational Mechanics Second Edition,2017:1-34.
    [6] GEERS M G D, KOUZNETSOVA V G, BREKELMANNS W A M. Multi-scale computational homogenization: Trends and challenges[J]. Journal of Computational and Applied Mathematics,2010,234:2175-2182. doi: 10.1016/j.cam.2009.08.077
    [7] FEYNMAN R P. There’s plenty of room at the bottom[data storage][J]. Journal of Microelectromechanical Systems,1992,1(1):60-66. doi: 10.1109/84.128057
    [8] FEYEL F, CHABOCHE J L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[J]. Computer Methods in Applied Mechanics and Engineering,2000,183(3-4):309-330. doi: 10.1016/S0045-7825(99)00224-8
    [9] 许杨剑, 武鹏伟, 赵帅, 等. 弹塑性多尺度分析的实现及其在颗粒增强复合材料中的应用[J]. 复合材料学报, 2017, 34(9):1934-1943.

    XU Y J, WU P W, ZHAO S, et al. Implementation of elastic-plastic multi-scale analysis and application in particle reinforced composites[J]. Acta Materiae Compositae Sinica,2017,34(9):1934-1943(in Chinese).
    [10] DVORAK G J, BENVENSITE Y. On transformation strains and uniform fields in multiphase elastic media[J]. Proceedings of the Royal Society of London,1992,437(A):291-310.
    [11] MICHEL J C, SUQUET P. Nonuniform transformation field analysis[J]. International Journal for Solids and Structures,2003,40:6937-6955. doi: 10.1016/S0020-7683(03)00346-9
    [12] MICHEL J C, SUQUET P. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:5477-5502. doi: 10.1016/j.cma.2003.12.071
    [13] FRITZEN F, LEUSCHNER M. Reduced basis hybrid com-putational homogenization based on a mixed incremental formulation[J]. Computer Methods in Applied Mechanics and Engineering,2013,260:143-154. doi: 10.1016/j.cma.2013.03.007
    [14] YVONNET J, HE Q C. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains[J]. Journal of Computational Physics,2007,223(1):341-368. doi: 10.1016/j.jcp.2006.09.019
    [15] FISH J, FILONOVA V, YUAN Z. Hybrid impotent-incompatible eigenstrain based homogenization[J]. International Journal for Numerical Methods in Engineering,2013,95(1):1-32. doi: 10.1002/nme.4473
    [16] JU X, MAHNKEN R. An NTFA-based homogenization framework considering softening effects[J]. Mechanics of Materials,2016,96:106-125. doi: 10.1016/j.mechmat.2016.01.007
    [17] GAO C Y, ZHAN B, CHEN L, et al. A micromechanical model of graphene-reinforced metal matrix nanocomposites with consideration of graphene orientations[J]. Compo-sites Science and Technology,2017,152:120-128. doi: 10.1016/j.compscitech.2017.09.010
    [18] DAI G, MISHNAEVSKY L. Graphene reinforced nanocomposites: 3D simulation of damage and fracture[J]. Com-putational Materials Science,2014,95:684-692. doi: 10.1016/j.commatsci.2014.08.011
    [19] SPANOS K N, GEORGANTZINOS S K, ANIFANTIS N K. Mechanical properties of graphene nanocomposites: A multiscale finite element prediction[J]. Composite Structures,2015,132:536-544. doi: 10.1016/j.compstruct.2015.05.078
    [20] HILL R. Elastic properties of reinforced solids: Some theoretical principles[J]. Journal of the Mechanics and Physics of Solids,1963,11:357-372. doi: 10.1016/0022-5096(63)90036-X
    [21] KOCH A, MIEHE C. Computational micro-to-macro tran-sitions of discretized microstructures undergoing small strains[J]. Archive of Applied Mechanics,2002,72(2002):300-317.
    [22] DVORAK G J, BAHEI-EL-DIN Y A, WAFA A M. The modeling of inelastic composite material with the transformation field analysis[J]. Modelling and Simulation in Materials Science and Engineering,1994,2:571-586. doi: 10.1088/0965-0393/2/3A/011
    [23] MAHNKEN R, SCHLIMMER M. Simulation of strength difference in elasto-plasticity for adhesive materials[J]. International Journal for Numerical Methods in Engineering,2005,63:1461-1477. doi: 10.1002/nme.1315
    [24] LIU F, MING P, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B,2007,76:064120-1-7.
    [25] FEDEROV F. Theory of elastic waves in crystals[M]. New York: Plenum Press, 1968.
    [26] FRITZEN F, BÖHLKE T. Three-dimensional finite element implementation of the nonuniform transformation field analysis[J]. International Journal for Numerical Methods in Engineering,2010,84:803-829. doi: 10.1002/nme.2920
    [27] 肖瑞, 李晓星, 李荣锋, 等. 十字形试样双向拉伸试验[J]. 理化检验:物理分册, 2017, 53(8):538-543.

    XIAO R, LI X X, LI R F, et al. Biaxial tensile testing of cruciform specimens[J]. Physical Testing and Chemical Analysis Part A: Physical Testing,2017,53(8):538-543(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1134
  • HTML全文浏览量:  483
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 录用日期:  2021-01-22
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回