留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羧甲基纤维素对多壁碳纳米管导电墨水性能的影响

贾鑫 毕红杰 任泽春 杨海英 许民

贾鑫, 毕红杰, 任泽春, 等. 羧甲基纤维素对多壁碳纳米管导电墨水性能的影响[J]. 复合材料学报, 2021, 38(11): 3799-3807. doi: 10.13801/j.cnki.fhclxb.20210104.002
引用本文: 贾鑫, 毕红杰, 任泽春, 等. 羧甲基纤维素对多壁碳纳米管导电墨水性能的影响[J]. 复合材料学报, 2021, 38(11): 3799-3807. doi: 10.13801/j.cnki.fhclxb.20210104.002
JIA Xin, BI Hongjie, REN Zechun, et al. Effect of carboxymethyl cellulose on the properties of multi-wall carbon nanotube conductive ink[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3799-3807. doi: 10.13801/j.cnki.fhclxb.20210104.002
Citation: JIA Xin, BI Hongjie, REN Zechun, et al. Effect of carboxymethyl cellulose on the properties of multi-wall carbon nanotube conductive ink[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3799-3807. doi: 10.13801/j.cnki.fhclxb.20210104.002

羧甲基纤维素对多壁碳纳米管导电墨水性能的影响

doi: 10.13801/j.cnki.fhclxb.20210104.002
基金项目: 国家重点研发计划(2018YFD0600302)
详细信息
    通讯作者:

    许民,教授,博士生导师,研究方向为生物质复合材料等  E-mail:xumin1963@126.com

  • 中图分类号: TB332

Effect of carboxymethyl cellulose on the properties of multi-wall carbon nanotube conductive ink

  • 摘要: 传统中性墨水多用丙烯酸树脂做增稠剂,且不具备导电能力,因此将羧甲基纤维素(CMC)与多壁碳纳米管(MWCNT)混合,使制备墨水书写后具备导电能力。采用超声制得CMC-MWCNT导电墨水,通过中性笔书写于纸上,对制备导电墨水的稳定性能、流变性能、书写性能和书写字迹的耐腐蚀性能、导电性能、折叠稳定性能进行分析,并与市场上晨光中性笔墨水(CG)进行对比。当添加CMC为0.3wt%、0.6wt%时,导电墨水的Zeta电位、屈服应力、屈服黏度均较低,书写时出现漏墨,书写后电阻较小,但折叠一百次后电阻增大较多,分别增大32.3%、17.9%。当添加CMC为0.9wt%、1.2wt%、1.5wt%时,导电墨水的Zeta电位绝对值均大于30 mV,体系处于稳定态;屈服应力与屈服黏度随CMC添加量增大而增大;CMC为0.9wt%和1.2wt%的导电墨水书写正常,书写后电阻分别为14.9 kΩ/cm、15.6 kΩ/cm,折叠100次后电阻分别增大8.7%、7.8%;1.5wt%CMC的导电墨水书写时有断墨,书写后电阻为28.3 kΩ/cm,折叠100次后电阻增大9.5%。与CG相比,1.2wt%CMC的导电墨水具有相似的稳定性能、流变性能、书写性能,并具备导电能力,可点亮LED灯。

     

  • 图  1  导电线段折叠平展循环

    Figure  1.  Folding and unfolding cycle of a conductive wire

    图  2  墨水的Zeta电位

    Figure  2.  Zeta potential of ink

    图  3  (a) 羧甲基纤维素-多壁碳纳米管(CMC-MWCNT)和晨光中性笔墨水(CG)的剪切应力-剪切速率曲线; (b) CMC-MWCNT-1.2剪切黏度-剪切应力曲线

    Figure  3.  (a) Carboxymethyl cellulose-multi-wall carbon nanotubes (CMC-MWCNT) and Chenguang neutral ink (CG) shear stress-shear rate curve; (b) CMC-MWCNT-1.2 shear viscosity-shear stress curve

    图  4  CG和不同CMC含量CMC-MWCNT的屈服应力和屈服黏度

    Figure  4.  Yield stress and yield viscosity of CG and CMC-MWCNT with different CMC contents

    图  5  不同CMC含量CMC-MWCNT和CG书写字迹

    Figure  5.  Different CMC contents CMC-MWCNT and CG handwriting

    图  6  不同CMC含量CMC-MWCNT和CG耐腐蚀处理

    Figure  6.  Different CMC contents CMC-MWCNT and CG corrosion resistance treatment

    图  7  不同CMC含量CMC-MWCNT书写导电线段电阻值

    Figure  7.  Resistance values of conductive line written by CMC-MWCNT with different CMC content

    图  8  不同CMC含量CMC-MWCNT导电线段折叠100次电阻变化

    Figure  8.  Different CMC content CMC-MWCNT conductive line folded 100 times resistance changes

    图  9  CMC-MWCNT-1.2导电线段折叠100次纸基电路图

    Figure  9.  Paper-based circuit diagram of CMC-MWCNT-1.2 conducting line segment folding 100 times

    表  1  耐腐蚀测试条件

    Table  1.   Corrosion resistance test conditions

    Testing agentAccepting surfaceImmersion time
    H2O A4 paper 24 h
    50wt%C2H5OH 10 min
    10wt%HCl 24 h
    10wt%NH3·H2O 24 h
    下载: 导出CSV
  • [1] KURRA N, KULKARNI G U. Pencil-on-paper: electronic devices[J]. Lab on a Chip,2013,13(15):2866-2873. doi: 10.1039/c3lc50406a
    [2] RUSSO A, AHN B Y, ADAMS J J, et al. Pen-on-paper flexible electronics.[J]. Advanced Materials,2011,23(30):3426-3430. doi: 10.1002/adma.201101328
    [3] 姜皎洁, 刘文涛, 黄灵阁, 等. 无线射频识别技术用导电油墨的研究[J]. 材料导报, 2015, 29(1):121-126. doi: 10.11896/j.issn.1005-023X.2015.01.021

    JIANG J J, LIU W T, HUANG L G, et al. State-of-the-art of the studies on conductive ink for radio frequency identification antenna[J]. Materials Review,2015,29(1):121-126(in Chinese). doi: 10.11896/j.issn.1005-023X.2015.01.021
    [4] LIU S, LI J, SHI X, et al. Roller ball-pen-drawing technology for extremely foldable paper-based electronics[J]. Advanced Electronic Materials,2017,3(7):1700098.
    [5] LI Y, ZHU H, WANG Y, et al. Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network[J]. Small Methods,2017,1:1-8.
    [6] EVAN Q, MATHIS T S, NARENDRA K, et al. Direct writing of additive-free mxene-in-water ink for electronics and energy storage[J]. Advanced Materials Technologies,2019,4:1800256. doi: 10.1002/admt.201800256
    [7] 姜欣, 赵轩亮, 李晶, 等. 石墨烯导电墨水研究进展: 制备方法、印刷技术及应用[J]. 科学通报, 2017, 62(27):3217-3235. doi: 10.1360/N972017-00288

    JIANG X, ZHAO X L, LI J, et al. Recent developments in graphene conductive ink: Preparation, printing technology and application[J]. Chinese Science Bulletin,2017,62(27):3217-3235(in Chinese). doi: 10.1360/N972017-00288
    [8] JIA H, WANG J, ZHANG X, et al. Pen-writing polypyrrole arrays on paper for versatile cheap sensors[J]. ACS Macro Letters,2014,3(1):86-90. doi: 10.1021/mz400523x
    [9] 陶国良, 陆小璐, 李海, 等. 填充银纳米棒新型导电油墨[J]. 复合材料学报, 2012, 29(4):143-147.

    TAO G L, LU X L, LI H, et al. A novel kind of conductive inkjet filled with Ag nanorods[J]. Acta Materiae Compositae Sinica,2012,29(4):143-147(in Chinese).
    [10] 王望, 郭彦峰, 孙振锋, 等. 碳系导电油墨填料的研究进展[J]. 化工进展, 2015, 34(12):4259-4264.

    WANG W, GUO Y F, SUN Z W, et al. Research progress of carbon-based conductive ink fillers[J]. Chemical Industry and Engineering Progress,2015,34(12):4259-4264(in Chinese).
    [11] BLANCH A J, LENEHAN C E, QUINTON J S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution[J]. Journal of Physical Chemistry B,2010,114(30):9805. doi: 10.1021/jp104113d
    [12] HAN J W, KIM B, LI J, et al. Carbon nanotube ink for writing on cellulose paper[J]. Materials Research Bulletin,2014,50(feb):249-253.
    [13] 李健, 刘雅南, 刘宁, 等. 羧甲基纤维素的制备研究及应用现状[J]. 食品工业科技, 2014, 35(8):379-382.

    LI J, LIU Y N, LIU N, et al. Study on the preparation and application status of carboxymethyl cellulose[J]. Science and Technology of Food Industry,2014,35(8):379-382(in Chinese).
    [14] SINAR D, KNOPF G K. Disposable piezoelectric vibration sensors with PDMS/ZnO transducers on printed graphene-cellulose electrodes[J]. Sensors and Actuators A: Physical,2019,302:111800.
    [15] 何军, 李莎, 王虹, 等. 羧甲基纤维素钠对纳米银导电墨水性能的影响[J]. 化学工业与工程, 2012(4):1-5. doi: 10.3969/j.issn.1004-9533.2012.04.001

    HE J, LI S, WANG H, et al. Effect of caboxymethyl cellulose sodium on the properties of nano-silver conductive ink[J]. Chemical Industry and Engineering,2012(4):1-5(in Chinese). doi: 10.3969/j.issn.1004-9533.2012.04.001
    [16] 中华人民共和国工业和信息化部. 中性墨水: QB/T 4434—2012[S]. 北京: 中国标准出版社, 2012.

    Ministry of Industry and Information Technology of the People’s Republic of China. Gel inks: QB/T 4434—2012[S]. Beijing: China Standards Press, 2012 (in Chinese).
    [17] 何北海, 张春梅, 伍红. 纸浆悬浮液Zeta电位分析的初步研究[J]. 中国造纸学报, 1999(00):69-74.

    HE B H, ZHANG C M, WU H. Preliminary study on Zeta potential analysis in pulp suspension[J]. Transactions of China Pulp and Paper,1999(00):69-74(in Chinese).
    [18] 黄苏萍, 肖奇. 十二烷基硫酸钠对碳纳米管悬浮液分散性能的影响[J]. 粉末冶金材料科学与工程, 2012, 17(1):133-138.

    HUANG S P, XIAO Q. Effect of sodium dodecyl sulfate on dispersion properties of carbon nanotubes[J]. Materials Science and Engineering of Powder Metallurgy,2012,17(1):133-138(in Chinese).
    [19] 刘海燕, 庞明军, 魏进家. 非牛顿流体研究进展及发展趋势[J]. 应用化工, 2010, 39(5):740-746.

    LIU H Y, PANG M J, WEI J J. A progress and trend of the non-Newtonian fluids[J]. Applied Chemical Industry,2010,39(5):740-746(in Chinese).
    [20] 陈晓明, 张璟焱, 徐文总, 等. 关于高分子液体"高黏度"和"剪切变稀"的讨论[J]. 高分子通报, 2019(6):68-71.

    CHEN X M, ZHANG J Y, XU W Z, et al. Discussion on “high viscosity” and “sheer thinning” of polymer liquid[J]. Polymer Bulletin,2019(6):68-71(in Chinese).
    [21] 刘守军, 贺晨霞, 冯博洪, 等. 中性墨水流变性与书写性能相关性研究[J]. 太原理工大学学报, 2013(3):259-263. doi: 10.3969/j.issn.1007-9432.2013.03.001

    LIU S J, HE C X, FENG B H, et al. Study on the correlation between gel ink rheological property and writing performance[J]. Journal of Taiyuan University of Technology,2013(3):259-263(in Chinese). doi: 10.3969/j.issn.1007-9432.2013.03.001
    [22] 钱纪军, 陈爱平, 刘众鑫, 等. 炭黑中性笔墨水书写性能的流变学表征[J]. 精细化工, 2009, 26(5):506-508.

    QIAN J J, CHEN A P, LIU Z X, et al. The rheological characterization of the writing performance of carbon black gel ink[J]. Fine Chemicals,2009,26(5):506-508(in Chinese).
    [23] 杨昕宇, 向卫东, 潘明初. 粘度对中性墨水书写性能的影响[J]. 温州大学学报(自然科学版), 2007(4):42-45.

    YANG X Y, XIANG W D, PAN M C. Viscosity influence on gel ink writing property[J]. Journal of Wenzhou University (Natural Science Edition),2007(4):42-45(in Chinese).
    [24] WANG W, FU S. Manufacture of a super-stable green gel pen ink based on CNC-indigo[J]. Cellulose,2020,27(16):1009-1020.
    [25] 孙亮权, 安兵, 李健, 等. 用纳米铜油墨印刷RFID标签天线[J]. 电子工艺技术, 2013, 000(1):6-9.

    SUN L Q, AN B, LI J, et al. Nano copper conductive ink printed RFID tag[J]. Electronics Process Technology,2013,000(1):6-9(in Chinese).
    [26] CHEN Y, ZHOU L, WEI J, et al. Direct ink writing of flexible electronics on paper substrate with graphene/polypyrrole/carbon black ink[J]. Journal of Electronics Materials,2019,48:3157-3168. doi: 10.1007/s11664-019-07085-x
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1198
  • HTML全文浏览量:  754
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 录用日期:  2020-12-21
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回