留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2/聚苯乙烯疏水复合微球的一步法合成和性能

袁辉 龚云蕾 吴绍伟 何长林 周泓宇 万小进 任先艳

袁辉, 龚云蕾, 吴绍伟, 等. SiO2/聚苯乙烯疏水复合微球的一步法合成和性能[J]. 复合材料学报, 2021, 38(8): 2538-2545. doi: 10.13801/j.cnki.fhclxb.20201030.009
引用本文: 袁辉, 龚云蕾, 吴绍伟, 等. SiO2/聚苯乙烯疏水复合微球的一步法合成和性能[J]. 复合材料学报, 2021, 38(8): 2538-2545. doi: 10.13801/j.cnki.fhclxb.20201030.009
YUAN Hui, GONG Yunlei, WU Shaowei, et al. One-step synthesis and properties of SiO2/polystyrene hydrophobic composite microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2538-2545. doi: 10.13801/j.cnki.fhclxb.20201030.009
Citation: YUAN Hui, GONG Yunlei, WU Shaowei, et al. One-step synthesis and properties of SiO2/polystyrene hydrophobic composite microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2538-2545. doi: 10.13801/j.cnki.fhclxb.20201030.009

SiO2/聚苯乙烯疏水复合微球的一步法合成和性能

doi: 10.13801/j.cnki.fhclxb.20201030.009
基金项目: 南海西部高含水水平井控水挖潜新技术研究与应用(YXKY-2019-ZJ-03)
详细信息
    通讯作者:

    任先艳,博士,讲师,硕士生导师,研究方向为功能高分子  E-mail:renxianyan@swust.edu.cn

  • 中图分类号: TB332;TQ325.2

One-step synthesis and properties of SiO2/polystyrene hydrophobic composite microspheres

  • 摘要: 提出了以苯乙烯、二乙烯基苯和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为单体,通过伴随着溶胶-凝胶反应的悬浮聚合法一步制备表面构筑有SiO2粗糙结构的交联聚苯乙烯微球(SiO2/聚苯乙烯疏水复合微球)。研究了油相组成、KH570用量和溶胶-凝胶反应条件对SiO2/聚苯乙烯疏水复合微球强度和疏水性能的影响。结果表明,当弃除油相中的溶剂甲苯,在50℃的恒温反应阶段采用氨水调控体系pH值为10~11时可以获得兼具持久疏水性能、高强度和超低密度的SiO2/聚苯乙烯疏水复合微球。SiO2/聚苯乙烯疏水复合微球的表观密度约0.9917 g∙cm−3,69 MPa的闭合压力下破碎率低至2.53%,表面静态水接触角高达140.7°,耐热性能优异(玻璃化转变和分解温度分别高达160℃和390℃)。尤其是,在涠州X油田A5井的螯合酸HD和FA中持续回流30天的过程中,SiO2/聚苯乙烯疏水复合微球表面的接触角变化仍分别保持在±10%和±7%以内。SiO2/聚苯乙烯疏水复合微球具备作为深部储层开采用支撑剂的极大潜力,也可用作封隔体控水工艺中的充填材料。

     

  • 图  1  第一恒温阶段水解,体系pH值为7~8 (a) 、9~10 (b) 和11~12 (c) 及第二 (d)、第三 (e) 和第四 (f) 恒温阶段水解,阶段体系pH值为10~11时制得的SiO2/聚苯乙烯复合微球的SEM图像、表面形貌和表面静态水接触角

    Figure  1.  SEM images, surface roughness and static water contact angles of SiO2/polystyrene composite microspheres prepared when hydrolyzed at the first insulation stage with pH value of 7-8 (a), 9-10 (b) and 11-12 (c), and that prepared when hydrolyzed at the second (d), third (e) and the fourth (f) insulation stage with pH value of 11-12

    图  2  SiO2/聚苯乙烯疏水复合微球和列于表2中的1号对比样品的FTIR图谱

    Figure  2.  FTIR spectra of SiO2/polystyrene hydrophobic composite microspheres and the control sample No.1 that listed in Table 2

    图  3  SiO2/聚苯乙烯疏水复合微球的TGA和DSC曲线

    Figure  3.  TGA and DSC curves of SiO2/polystyrene hydrophobic composite microspheres

    Tg—Glass transition temperature; Ti—Decomposition temperature

    图  4  SiO2/聚苯乙烯疏水复合微球 (a) 和商售疏水覆膜陶粒 (b) 在涠州X油田A5井的螯合酸HD和螯合酸FA中回流30天过程中的表面接触角变化

    Figure  4.  Surface water contact angle changes of SiO2/polystyrene hydrophobic composite microspheres (a) and hydrophobic coated ceramics (b) during refluxed for 30 days in the chelate acid HD and FA that applied in Well A5 in Weizhou X Oil field

    表  1  油相中甲苯用量不同时制得的聚苯乙烯微球的孔结构和其在55 MPa闭合压力下的破碎率

    Table  1.   Pore structures and crushing rates under 55 MPa closing pressure of polystyrene microspheres obtained with different toluene contents in oil phase

    mDVB: mStVtolueneVwaterTotal pore volume/(mL∙g−1)Surface area/(m2∙g)Crushing ratio under 55 MPa/%
    5∶5 1∶3 1.363×10−2 54.022 18.7
    1∶4 1.083×10−2 36.456 10.7
    1∶5 3.185×10−3 3.388 3.0
    0 2.418×10−3 1.743 2.5
    1∶5 0 2.432×10−3 1.303 2.4
    Notes: mDVBmSt—Mass ratio of divinylbenzene (DVB) to styrene (St); VtolueneVwater—Volume ratio of toluene to water.
    下载: 导出CSV

    表  2  经过不同pH值和在不同恒温阶段水解得到的SiO2/聚苯乙烯复合微球表面粗糙度及静态水接触角(质量比DVB∶St∶KH570=1∶5∶0.75)

    Table  2.   Surface roughness and static water contact angles on the surface of SiO2/polystyrene composite microspheres prepared when hydrolysis at different pH values and at different heat preservation stages (Mass ratio DVB∶St∶KH570=1∶5∶0.75)

    No.pH valueHydrolysis stageSurface roughnessStatic contact angle/(°)
    1 7-8 First 51.5
    2 9-10 First 126.1
    3 10-11 First √√ 140.7
    4 Second 123.9
    5 Third 122.8
    6 Fourth 86.6
    Notes: DVB—Divinylbenzene; St—Styrene; KH570—γ-methacryloxypropyl-trimethoxy silane; ○—Smooth; √—Rough; √√—Rougher than that labeled as √.
    下载: 导出CSV

    表  3  SiO2/聚苯乙烯疏水复合微球和商售疏水覆膜陶粒在混合酸中处理30 min后的稳定性

    Table  3.   Stability of SiO2/polystyrene hydrophobic composite microspheres and commercially hydrophobic coated ceramsite when treated in mixed acid for 30 min

    SampleInitial contact angle/(°)After treated in mixed acid for 30 min
    Contact angle/(°)Loss of contact angle/%Mass loss/wt%
    SiO2/polystyrene hydrophobic composite microspheres 140.7 128.1 8.96 0.80
    Commercially hydrophobic coated ceramsite 133.5 100.9 24.42 2.03
    下载: 导出CSV
  • [1] BARBATI A C, DESROCHES J, ROBISSON A, et al. Complex fluids and hydraulic fracturing[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 415-453.
    [2] TANG Y, RANJITH P G, PERERA M S A. Major factors influencing proppant behaviour and proppant-associated damage mechanisms during hydraulic fracturing[J]. Acta Geotechnica,2018,13(4):757-780. doi: 10.1007/s11440-018-0670-5
    [3] LIANG C, LUO W, YAN C, et al. Ultra-lightweight proppant synthesized from PMMA/Pine bark composite: Low-cost material and outstanding properties[J]. Chemistry Letters,2016,45(8):994-996. doi: 10.1246/cl.160434
    [4] XU Y, CHEN T, HU J, et al. Study on preparation and properties of PMMA composite microspheres as the matrix of low density proppant[J]. Applied Mechanics & Materials, 2013, 457-458: 116-119.
    [5] CHEN T, WANG Y, YAN C, et al. Preparation of heat resisting poly(methyl methacrylate)/graphite composite microspheres used as ultra-lightweight proppants[J]. Journal of Applied Polymer Science,2015,132(18):41924.
    [6] ZHANG Y, YAN C, CHEN T, et al. Ultra-lightweight compo-site proppants prepared via suspension polymerization[J]. Journal of Composite Materials,2016,50(20):2823-2831. doi: 10.1177/0021998315613128
    [7] LIANG T, YAN C, ZHOU S, et al. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application[J]. Journal of Geophysics and Engineering,2017,14(5):1225-1232. doi: 10.1088/1742-2140/aa6e7e
    [8] WANG Y, CHEN T, YAN C. Reinforced performances of polymethyl methacrylate/silica fume composite spherical particles used as ultra-lightweight proppants[J]. Journal of Reinforced Plastics and Composites,2015,34(8):672-683. doi: 10.1177/0731684415577236
    [9] 宋月英, 韩丁, 关晓琳, 等. 自组装法制备磺化聚苯乙烯@Fe3O4磁性复合颗粒及其磁性能[J]. 复合材料学报, 2020, 37(6):1364-1369.

    SONG Y Y, HAN D, GUAN X L, et al. Preparation and magnetic properties of sulfonated polystyrene @Fe3O4 magnetic composite particles by self-assembly method[J]. Acta Materiae Compositae Sinica,2020,37(6):1364-1369(in Chinese).
    [10] 王荣曾, 王园园, 杨媛媛, 等. 纳米银粒子/磺化聚苯乙烯复合微球的制备及其性能研究[J]. 功能材料, 2019, 50(11):11205-11210.

    WANG R Z, WANG Y Y, YANG Y Y, et al. Preparation and properties of nano-silver particles/sulfonated polystyrene composite microsphere[J]. Function Materials,2019,50(11):11205-11210(in Chinese).
    [11] 李永超, 张毅, 金日光. 分散聚合法制备二氧化硅/聚苯乙烯单分散复合微球[J]. 复合材料学报, 2005, 22(2):21-26.

    LI Y C, ZHANG Y, JIN R G. Sillcon dioxide/polystyrene monodisperse composite microsphere by dispersion polymerization[J]. Acta Materiae Compositae Sinica,2005,22(2):21-26(in Chinese).
    [12] LIANG T, YAN C, ZHOU S, et al. Silica fume reinforced polystyrene-based composite particles used as ultra-light weight proppants in hydraulic fracturing[J]. Materials Research Express,2017,4(11):115306. doi: 10.1088/2053-1591/aa98a7
    [13] HAN X, CHENG Q, BAO F, et al. Synthesis of low-density heat-resisting polystyrene/graphite composite microspheres used as water carrying fracturing proppants[J]. Polymer-Plastics Technology and Engineering,2014,53(16):1647-1653. doi: 10.1080/03602559.2014.919648
    [14] PIETRAK M J, STANLEY R, WEBER B J, et al. Relative permeability modifier treatments on gulf of mexico frac-packed and gravel-packed oil and gas wells[M]. SPE Annual Technical Conference and Exhibition. Dallas: Society of Petroleum Engineers, 2005: 9.
    [15] 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: SY/T 5108—2014[S]. 北京: 石油工业出版社, 2015.

    National Energy Administration. Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operation: SY/T 5108—2014[S]. Beijing: Petroleum Industry Press, 2015(in Chinese).
    [16] TAN L, TAN B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications[J]. Chemical Society Reviews,2017,46(11):3322-3356. doi: 10.1039/C6CS00851H
    [17] 缑可贞, 刘才林, 杨海君, 等. DVB 用量对SDB结构和Pt-SDB催化性能影响研究[J]. 原子能科学技术, 2015(1):13-18.

    GOU K Z, LIU C L, YANG H J, et al. Influence of DVB amounts on structure of SDB and catalytic performance of Pt-SDB[J]. Atomic Energy Science and Technology,2015(1):13-18(in Chinese).
    [18] BROOKS B W. Suspension polymerization processes[J]. Chemical Engineering & Technology,2010,33(11):1737-1744.
    [19] HENCH L L, WEST J K. The sol-gel process[J]. Chemical Reviews,1990,90(1):33-72. doi: 10.1021/cr00099a003
    [20] AL-OWEINI R, EL-RASSY H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R''Si(OR')3 precursors[J]. Journal of Molecular Structure,2009,919(1-3):140-145. doi: 10.1016/j.molstruc.2008.08.025
    [21] MANSOOR Z, ABDOLLATIF G, MOHD Z. Experimental characterization of a new high-strength ultra-lightweight composite proppant derived from renewable resources[J]. Journal of Petroleum Science and Engineering,2018,170:1038-1047.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  454
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2020-10-21
  • 网络出版日期:  2020-10-30
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回