留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低温对超高韧性水泥基复合材料抗压韧性影响试验

苏骏 钱维民 郭锋 赵家玉

苏骏, 钱维民, 郭锋, 等. 超低温对超高韧性水泥基复合材料抗压韧性影响试验[J]. 复合材料学报, 2021, 38(12): 4325-4336. doi: 10.13801/j.cnki.fhclxb.20210223.002
引用本文: 苏骏, 钱维民, 郭锋, 等. 超低温对超高韧性水泥基复合材料抗压韧性影响试验[J]. 复合材料学报, 2021, 38(12): 4325-4336. doi: 10.13801/j.cnki.fhclxb.20210223.002
SU Jun, QIAN Weimin, GUO Feng, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325-4336. doi: 10.13801/j.cnki.fhclxb.20210223.002
Citation: SU Jun, QIAN Weimin, GUO Feng, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325-4336. doi: 10.13801/j.cnki.fhclxb.20210223.002

超低温对超高韧性水泥基复合材料抗压韧性影响试验

doi: 10.13801/j.cnki.fhclxb.20210223.002
基金项目: 湖北省自然科学基金(2020CFB860)
详细信息
    通讯作者:

    钱维民,硕士,研究方向为纤维混凝土基本性能 E-mail:907415610@qq.com

  • 中图分类号: TB332

Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites

  • 摘要: 超高韧性水泥基复合材料(UHTCC)是一种具有超高韧性及良好耐久性能的新型复合材料,其抗压韧性是评价其工作性能的重要指标。通过对5组不同纤维掺量的UHTCC在超低温作用后的单轴受压试验,研究超低温作用下UHTCC的抗压韧性评价指标,并对其变形能力进行等效分析,为UHTCC在超低温环境下的工程应用提供理论支持。研究结果表明:在一定范围内,随着纤维体积掺量的增加,UHTCC的抗压强度、抗压韧性均有明显提升,而超出最优掺量后性能反而略有下降;超低温对于UHTCC的抗压强度具有一定的提升作用,当温度降低至−196℃,其轴向抗压强度最大可提升约74.42%,但其脆性性能更明显。

     

  • 图  1  低温试验设备与低温处理后试件形态

    Figure  1.  Cryogenic equipment and specimen shape after cryogenic treatment

    图  2  试验加载装置

    Figure  2.  Test loading device

    图  3  不同纤维体积掺量的UHTCC破坏形态

    Figure  3.  UHTCC failure morphologies with different fiber volume contents

    图  4  UHTCC的单轴受压荷载-变形曲线

    Figure  4.  UHTCC uniaxial compression load-deformation curves

    图  5  UHTCC抗压强度与温度变化关系

    Figure  5.  Relationship between compressive strength of UHTCC and temperature change

    图  6  不同因素对UHTCC变形能的影响

    Figure  6.  Influence of different factors on the deformation energy of UHTCC

    图  7  不同因素对UHTCC纤维增强韧性指标影响

    Figure  7.  Influence of different factors on fiber reinforced toughness of UHTCC

    图  8  不同因素对UHTCC残余韧性指数影响

    Figure  8.  Influence of different factors on residual toughness index of UHTCC

    表  1  聚乙烯醇(PVA)纤维性能指标

    Table  1.   Polyvinyl alcohol (PVA) fiber performance index

    NameDensity/(g·cm−3)Diameter/mmLength/mmElastic modulus/MPaTensile strength/MPaElongation/%
    REC15×12 1.3 0.04 12 120 526 6
    下载: 导出CSV

    表  2  超高韧性水泥基复合材料(UHTCC)配合比及试验分组

    Table  2.   Ultra high toughness cementitious composites (UHTCC) mix proportion and test grouping

    SpecimenVolume fraction of
    PVA fiber/vol%
    Temperature/℃Fly ash/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Silica fume/
    (kg·m−3)
    C30 0 20/0/−50/−100/−150/−196 533.3 120 133.3 13.3
    0.5vol%PVA/C30 0.5 20/0/−50/−100/−150/−196 533.3 120 133.3 13.3
    1.0vol%PVA/C30 1.0 20/0/−50/−100/−150/−196 533.3 120 133.3 13.3
    1.5vol%PVA/C30 1.5 20/0/−50/−100/−150/−196 533.3 120 133.3 13.3
    2.0vol%PVA/C30 2.0 20/0/−50/−100/−150/−196 533.3 120 133.3 13.3
    下载: 导出CSV

    表  3  各UHTCC试件平均抗压强度试验值

    Table  3.   Average compressive strength test values of UHTCC specimens MPa

    Action temperature20℃0℃−50℃−100℃−150℃−196℃
    Measured temperature 20℃ 0℃ −50℃ −98.2℃ −132.2℃ −162.8℃
    C30 27.648 27.080 28.904 32.984 34.584 31.384
    0.5vol%PVA/C30 29.288 28.976 32.968 35.296 36.168 35.464
    1.0vol%PVA/C30 32.920 34.048 46.840 48.984 54.864 57.424
    1.5vol%PVA/C30 30.352 32.312 33.688 39.760 43.368 42.552
    2.0vol%PVA/C30 29.152 29.448 29.920 33.696 35.792 31.456
    下载: 导出CSV

    表  4  各阶段荷载及UHTCC相应变形

    Table  4.   Load and corresponding deformation of UHTCC at each stage

    SpecimenTemperature/℃Cracking deformation δc/mmCracking load/kNPeak deformation/mmPeak load/kN
    C30 20 1.01 276.48
    0 1.02 270.80
    −50 1.02 289.04
    −100 1.08 329.84
    −150 1.14 345.84
    −196 1.01 313.84
    0.5vol%PVA/C30 20 0.452 112.72 1.01 292.88
    0 0.483 105.86 1.01 289.76
    −50 0.574 129.43 1.12 329.68
    −100 0.694 152.31 1.24 352.96
    −150 0.691 136.19 1.34 361.68
    −196 0.694 146.58 1.35 354.64
    1.0vol%PVA/C30 20 0.582 107.45 1.24 329.20
    0 0.683 128.04 1.34 340.48
    −50 0.716 156.30 1.35 468.40
    −100 0.793 169.63 1.56 489.84
    −150 0.804 174.05 1.46 548.64
    −196 0.911 245.98 1.57 574.24
    1.5vol%PVA/C30 20 0.683 111.13 1.23 303.52
    0 0.684 113.92 1.23 323.12
    −50 0.815 129.48 1.36 336.88
    −100 0.784 157.38 1.56 397.60
    −150 0.682 162.77 1.45 433.68
    −196 0.622 158.41 1.24 425.52
    2.0vol%PVA/C30 20 0.582 92.68 1.24 291.52
    0 0.692 105.48 1.24 294.48
    −50 0.794 111.88 1.35 299.20
    −100 0.911 122.42 1.35 336.96
    −150 0.914 141.10 1.46 357.92
    −196 0.816 115.73 1.46 314.56
    下载: 导出CSV

    表  5  不同影响因素下的UHTCC等效抗压强度及变形能

    Table  5.   UHTCC equivalent compressive strength and deformation energy under different influencing factors

    SpecimenTemperature/℃Equivalent compressive
    strength/MPa
    Modified equivalent
    compressive strength
    Deformation energy
    u=0.85u=0.5u=0.2u=0.85u=0.5u=0.2$ {A}_{1} $$ {A}_{3}^{1} $$ {A}_{5.5}^{1} $$ {A}_{10}^{1} $
    C30 20 15.99 16.09 15.14 0.069 0.080 0.086 262.62
    0 15.95 15.99 15.19 0.065 0.074 0.078 238.36
    −50 15.36 15.65 15.12 0.057 0.063 0.067 203.23
    −100 18.28 18.49 18.32 0.071 0.078 0.081 239.75
    −150 19.10 19.27 19.25 0.076 0.080 0.081 244.80
    −196 16.64 16.84 16.63 0.059 0.064 0.066 198.57
    0.5vol%PVA/C30 20 18.54 18.67 13.59 0.091 0.138 0.225 20.38 203.54 410.9 601.35
    0 16.94 17.69 12.38 0.077 0.120 0.200 23.07 228.13 381.51 575.90
    −50 17.89 18.28 12.90 0.085 0.107 0.209 38.22 277.60 410.58 590.23
    −100 17.53 18.26 11.96 0.078 0.096 0.194 46.42 306.29 432.35 536.75
    −150 18.21 18.52 12.61 0.092 0.101 0.208 45.92 313.43 451.58 578.76
    −196 17.93 18.44 12.67 0.088 0.100 0.206 49.81 310.54 444.52 567.76
    1.0vol%PVA/C30 20 18.73 19.25 14.12 0.108 0.147 0.234 32.83 295.87 487.26 687.56
    0 18.25 19.25 14.00 0.095 0.135 0.227 42.06 353.44 511.43 638.39
    −50 23.79 24.25 16.80 0.133 0.150 0.278 55.94 448.87 623.95 779.93
    −100 24.40 24.71 16.17 0.141 0.153 0.262 71.49 463.85 637.40 714.27
    −150 25.28 26.05 17.08 0.141 0.153 0.284 70.92 492.25 684.66 779.96
    −196 26.58 27.30 17.22 0.154 0.168 0.279 89.00 541.76 722.85 748.39
    1.5vol%PVA/C30 20 17.59 17.79 13.49 0.098 0.142 0.223 35.78 333.70 509.73 634.45
    0 17.06 17.81 13.11 0.090 0.126 0.212 35.85 330.93 489.98 602.15
    −50 16.57 17.08 12.46 0.093 0.108 0.203 51.53 341.55 489.28 556.85
    −100 19.93 20.10 13.23 0.114 0.121 0.220 51.80 378.65 517.2 606.98
    −150 21.67 22.07 13.18 0.110 0.119 0.214 48.06 368.91 488.51 592.85
    −196 21.16 21.55 12.74 0.098 0.106 0.206 36.96 334.42 446.67 582.21
    2.0vol%PVA/C30 20 16.73 17.38 13.93 0.095 0.162 0.231 25.32 269.03 476.88 667.32
    0 14.98 16.47 12.33 0.077 0.124 0.200 34.96 308.68 467.12 564.32
    −50 14.20 15.19 10.90 0.073 0.099 0.177 44.67 306.16 433.97 486.11
    −100 13.64 14.28 9.37 0.071 0.085 0.155 49.49 291.86 395.82 416.37
    −150 15.15 15.93 9.67 0.082 0.096 0.160 55.82 315.77 408.47 425.75
    −196 14.37 15.04 8.97 0.073 0.085 0.149 50.75 274.66 356.86 396.01
    Notes:u—Load when the load drops to u times the ultimate load; $ {A}_{n}^{1} $—Absorbed energy after cracking of UHTCC with different deformation degrees.
    下载: 导出CSV

    表  6  UHTCC纤维增强韧性指标R与残余韧性指标Rc

    Table  6.   Fiber reinforced toughness index R and residual toughness index Rc in UHTCC

    SpecimenTemperature/℃AUHTCCAJTAfzFiber reinforced
    toughness index R
    Residual toughness
    index Rc
    C30 20
    0
    −50
    −100
    −150
    −196
    0.5vol%PVA/C30 20 675.32 262.62 155.56 2.57 2.94
    0 601.23 238.36 140.43 2.52 2.28
    −50 628.45 203.24 164.44 3.09 1.86
    −100 583.17 239.76 201.31 2.43 1.03
    −150 624.68 244.81 221.98 2.55 1.43
    −196 617.57 198.58 225.82 3.11 0.98
    1.0vol%PVA/C30 20 702.39 262.62 176.86 2.67 2.97
    0 680.45 238.36 217.17 2.85 2.13
    −50 835.87 203.24 258.82 4.11 2.23
    −100 785.76 239.76 343.27 3.28 1.29
    −150 850.88 244.81 320.75 3.48 1.65
    −196 837.39 198.58 369.19 4.22 1.27
    1.5vol%PVA/C30 20 670.23 262.62 166.64 2.55 3.02
    0 638.00 238.36 159.47 2.68 3.00
    −50 608.38 203.24 179.57 2.99 2.39
    −100 658.78 239.76 286.30 2.75 1.30
    −150 640.90 244.81 259.05 2.62 1.47
    −196 619.17 198.58 235.09 3.12 1.63
    2.0vol%PVA/C30 20 692.64 262.62 159.78 2.64 3.33
    0 599.28 238.36 147.07 2.51 3.07
    −50 530.78 203.24 163.73 2.61 2.24
    −100 465.86 239.76 152.17 1.94 2.06
    −150 481.57 244.81 197.89 1.97 1.43
    −196 446.76 198.58 165.76 2.25 1.70
    Notes:AUHTCC—Area under the curve calculated from the peak load corresponding to five times the deformation as the limit point of the residual toughness; AJT—Toughness after ignoring the peak of the matrix, and the area under the load-deformation curve corresponding to the peak point is taken as the energy absorption value of the matrix; Afz—Area under the corresponding curve when the load-deformation curve reaches the peak load.
    下载: 导出CSV
  • [1] CAVERZAN A, CADONI E, PRISCO M D. Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure[J]. Mechanics of Materials, 2013, 59: 87-109.
    [2] TOUTANJI H A, EVANS S, GRUGEL R N. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials,2012,29:444-448. doi: 10.1016/j.conbuildmat.2011.10.041
    [3] LI V C, LEUNG C. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.
    [4] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6):45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU Shilang, LI Hedong. Research progress and engineering application of ultra-high toughness cement-based composites[J]. China Civil Engineering Journal,2008(6):45-60(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.06.008
    [5] 吴泽媚. 超高性能混凝土中纤维与基体界面粘结性能多尺度研究[D]. 长沙: 湖南大学, 2017.

    WU Zemei. Multi-scale study on the bonding properties of fiber and matrix interface in ultra-high performance concrete[D]. Changsha: Hunan University, 2017(in Chinese).
    [6] 宁逢伟, 陈波,张丰. PVA纤维掺量对水工混凝土抗裂性能的影响[J]. 水利水电技术, 2017, 48(2): 125-129.

    NING Fengwei, CHEN Bo, ZHANG Feng. Effect of PVA fiber content on crack resistance of hydraulic concrete[J]. Water Conservancy and Hydropower Technology, 2017, 48 (2): 125-129(in Chinese).
    [7] LIU W, HAN J. Experimental investigation on compressive toughness of the PVA-steel hybrid fiber reinforced cementitious composites[J]. Frontiers in Materials, 2019, 6: 108
    [8] 牛龙龙, 张士萍, 韦有信. 钢纤维掺量对混凝土力学性能的影响[J]. 混凝土与水泥制品, 2019(3):51-54.

    NIU Longlong, ZHANG Shiping, WEI Youxin. The effect of steel fiber content on the mechanical properties of concrete[J]. China Concrete and Cement Products,2019(3):51-54(in Chinese).
    [9] 张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66. doi: 10.3321/j.issn:1000-131X.2009.10.008

    ZHANG Xiufang, XU Shilang, HOU Lijun. Research on using ultra-high toughness cement-based composites to improve the flexural crack resistance of reinforced concrete beams (II): Experimental research[J]. China Civil Engineering Journal,2009,42(10):53-66(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.10.008
    [10] KIM J W, LEE J J, LEE D G. Effect of fiber orientation on the tensile strength in fiber-reinforced polymeric composite materials[J]. Key Engineering Materials,2005,297-300:2897-2902. doi: 10.4028/www.scientific.net/KEM.297-300.2897
    [11] 罗才松. 聚丙烯纤维掺量对混凝土强度的影响[J]. 科学技术与工程, 2011, 11(4):874-876. doi: 10.3969/j.issn.1671-1815.2011.04.045

    LUO Caisong. The influence of polypropylene fiber content on concrete strength[J]. Science Technology and Engineering,2011,11(4):874-876(in Chinese). doi: 10.3969/j.issn.1671-1815.2011.04.045
    [12] KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A review of concrete properties at cryogenic temperatures: Towards direct LNG containment[J]. Construction and Building Materials,2013,47:760-770.
    [13] SHEN D, JIANG J, SHEN J, et al. Influence of curing tem-perature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age[J]. Construction & Building Materials,2016,103:67-76.
    [14] DEROSA D, HOULT N A, GREEN M F. Effects of varying temperature on the performance of reinforced concrete[J]. Materials & Structures,2015,48(4):1109-1123.
    [15] 王庆, 王艳云, 邢海峰. 聚丙烯纤维混凝土在低温条件下力学性能的研究[J]. 石河子大学学报(自然科学版), 2007(2):229-231.

    WANG Qing, WANG Yanyun, XING Haifeng. Research on the mechanical properties of polypropylene fiber concrete under low temperature conditions[J]. Journal of Shihezi University (Natural Science),2007(2):229-231(in Chinese).
    [16] LIU X, ZHANG M H, CHIA K S, et al. Mechanical properties of ultra-lightweight cement composite at low tempera-tures of 0 to 60°C[J]. Cement & Concrete Composites,2016,73:289-298.
    [17] DAHMANI L, KHENANE A, KACI S. Behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9-10):517-525. doi: 10.1016/j.cryogenics.2007.07.001
    [18] XIE J, LI X, WU H. Experimental study on the axial-compression performance of concrete at cryogenic tempera-tures[J]. Construction & Building Materials,2014,72(dec. 15):380-388.
    [19] CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,261-263:389-393. doi: 10.4028/www.scientific.net/AMR.261-263.389
    [20] 中国工程建设协会标准. 纤维混凝土试验方法标准: CECS13: 2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Test method standard for fiber reinforced concrete: CECS13: 2009[S]. Beijing: China Planning Press, 2010(in Chinese).
    [21] YAMANA S, KASAMI H, OKUNO T. Properties of concrete at very low temperatures[J]. Publication SP 55,1978,55:1-12.
    [22] MIURA T. The properties of concrete at very low tempera-tures[J]. Materials and Structures,1989,22(4):243-254. doi: 10.1007/BF02472556
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  424
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 录用日期:  2021-02-02
  • 网络出版日期:  2021-02-23
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回