留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP增强铝合金叠层复合材料短柱力学性能

郭小农 王丽 罗永峰 徐航 邹家敏

郭小农, 王丽, 罗永峰, 等. CFRP增强铝合金叠层复合材料短柱力学性能[J]. 复合材料学报, 2020, 37(0): 1-13
引用本文: 郭小农, 王丽, 罗永峰, 等. CFRP增强铝合金叠层复合材料短柱力学性能[J]. 复合材料学报, 2020, 37(0): 1-13
Xiaonong GUO, Li WANG, Yongfeng LUO, Hang XU, Jiamin ZOU. Mechanical properties of CFRP reinforced aluminum alloy laminated composite stub column[J]. Acta Materiae Compositae Sinica.
Citation: Xiaonong GUO, Li WANG, Yongfeng LUO, Hang XU, Jiamin ZOU. Mechanical properties of CFRP reinforced aluminum alloy laminated composite stub column[J]. Acta Materiae Compositae Sinica.

CFRP增强铝合金叠层复合材料短柱力学性能

基金项目: 国家自然科学基金(51878473)
详细信息
    通讯作者:

    徐航,硕士研究生,研究方向为铝合金结构 E-mail:xhtongji@163.com

  • 中图分类号: TB333

Mechanical properties of CFRP reinforced aluminum alloy laminated composite stub column

  • 摘要: CFRP增强铝合金(CFRP/Al)复合材料轻质高强,具有良好延性,在大跨空间结构中具有广阔的应用前景,然而国内外对其受力性能的研究目前几乎处于空白状态。为此,本文对CFRP/Al进行了理论分析、试验研究和数值模拟。推导得到了CFRP/Al的等效工程弹性常数;进行了6根短柱轴压试验,得到了其轴压承载力和破坏模式;根据弹性力学推导得到了试件的荷载-压缩变形曲线,理论曲线与试验曲线吻合良好;建立了两种有限元模型——逐层精细化模型和整体等效简化模型,并将两种数值模型结果与试验结果对比,结果表明,两种数值模型均能很好地模拟CFRP/Al短柱的轴压性能。
  • 图  1  CFRP/Al型材制作过程

    Figure  1.  Manufacturing process of CFRP/Al profile

    图  2  CFRP/Al短柱截面

    Figure  2.  CFRP/Al short column section

    图  3  CFRP/Al试件应变测点布置图

    Figure  3.  Arrangement of measuring points for CFRP/Al specimens

    图  4  盖板示意图

    Figure  4.  Schematic diagram of cover plate

    图  5  试验加载装置

    Figure  5.  Test loading device

    图  6  CFRP/Al试件破坏

    Figure  6.  Failure diagram of CFRP/Al specimens

    图  7  CFRP/Al试件典型破坏

    Figure  7.  Typical failure of CFRP/Al specimens

    图  8  CFRP/Al复合材料叠层短柱荷载-压缩变形曲线

    Figure  8.  Load-compression deformation curve of CFRP/Al composite stub column

    图  9  CFRP/Al短柱曲线预测

    Figure  9.  Prediction of CFRP/Al short column curve

    图  10  CFRP/Al试件理论荷载-变形曲线和试验曲线对比

    Figure  10.  Comparison between theoretical load-compression deformation curve and test curve of CFRP/Al short column

    图  11  CFRP/Al数值模型部件图及装配图

    Figure  11.  Component and assembly drawing of CFRP/Al numerical model

    图  12  CFRP/Al模型的边界条件

    Figure  12.  Boundary conditions of CFRP/Al model

    图  13  CFRP/Al短柱有限元模型变形图

    Figure  13.  Deformation diagram of CFRP/Al short column finite element model

    图  14  CFRP/Al叠层复合材料短柱荷载-位移曲线对比图

    Figure  14.  Load-displacement curve comparison diagram of CFRP/Al short column curve

    图  15  逐层精细化模型极限荷载时应力分布图

    Figure  15.  Stress distribution diagram of layer by layer refined model under ultimate load

    图  16  等效简化模型极限荷载时应力分布图

    Figure  16.  Stress distribution diagram of equivalent simplified model under ultimate load

    表  1  CFRP/Al短柱编号及规格

    Table  1.   The number and specification of CFRP/Al short column

    NumberHeight/mmSection(measured nominal size)
    60-A 60 90×37.5×35.5×5.8×6.7
    60-B 60 90×37.5×35.8×5.5×6.5
    70-A 70 90×37.5×35.5×6.0×6.7
    70-B 70 90×37.5×35.8×5.6×6.5
    80-A 80 90×37.5×35.5×5.7×6.8
    80-B 80 90×37.5×35.8×5.6×6.5
    Notes:H-section specification H×B1×B2×tw×tf are the height of the section, the width of the upper flange, the width of the lower flange, the thickness of the flange and the thickness of the web correspondingly.
    下载: 导出CSV

    表  2  CFRP/Al铺层属性及相关参数

    Table  2.   Layer properties and related parameters of CFRP/Al

    OrderMaterialAngle/°Thickness/mmOrderMaterialAngle/°Thickness/mm
    1 CFRP 41.08 0.09 48 EP 0 0.08
    2 EP 0 0.08 49 CFRP −23.59 0.09
    3 Al 0 0.02 50 EP 0 0.08
    4 EP 0 0.08 51 Al 0 0.02
    5 CFRP 27.95 0.09 52 EP 0 0.08
    6 EP 0 0.08 53 CFRP −26.45 0.09
    7 Al 0 0.02 54 EP 0 0.08
    8 EP 0 0.08 55 Al 0 0.02
    9 CFRP 26.45 0.09 56 EP 0 0.08
    10 EP 0 0.08 57 CFRP −27.95 0.09
    11 Al 0 0.02 58 EP 0 0.08
    12 EP 0 0.08 59 Al 0 0.02
    13 CFRP 23.59 0.09 60 EP 0 0.08
    14 EP 0 0.08 61 CFRP −41.08 0.09
    15 Al 0 0.02 62 EP 0 0.08
    16 EP 0 0.08 63 Al 0 0.02
    17 CFRP 41.08 0.09 64 EP 0 0.08
    18 EP 0 0.08 65 CFRP −23.59 0.09
    19 Al 0 0.02 66 EP 0 0.08
    20 EP 0 0.08 67 Al 0 0.02
    21 CFRP 27.95 0.09 68 EP 0 0.08
    22 EP 0 0.08 69 CFRP −26.45 0.09
    23 Al 0 0.02 70 EP 0 0.08
    24 EP 0 0.08 71 Al 0 0.02
    25 CFRP 26.45 0.09 72 EP 0 0.08
    26 EP 0 0.08 73 CFRP −27.95 0.09
    27 Al 0 0.02 74 EP 0 0.08
    28 EP 0 0.08 75 Al 0 0.02
    29 CFRP 23.59 0.09 76 EP 0 0.08
    30 EP 0 0.08 77 CFRP −41.08 0.09
    31 Al 0 0.02 78 EP 0 0.08
    32 EP 0 0.08 79 Al 0 0.02
    33 CFRP 41.08 0.09 80 EP 0 0.08
    34 EP 0 0.08 81 CFRP −23.59 0.09
    35 Al 0 0.02 82 EP 0 0.08
    36 EP 0 0.08 83 Al 0 0.02
    37 CFRP 27.95 0.09 84 EP 0 0.08
    38 EP 0 0.08 85 CFRP −26.45 0.09
    39 Al 0 0.02 86 EP 0 0.08
    40 EP 0 0.08 87 Al 0 0.02
    41 CFRP 26.45 0.09 88 EP 0 0.08
    42 EP 0 0.08 89 CFRP −27.95 0.09
    43 Al 0 0.02 90 EP 0 0.08
    44 EP 0 0.08 91 Al 0 0.02
    45 CFRP 23.59 0.09 92 EP 0 0.08
    46 EP 0 0.08 93 CFRP −41.08 0.09
    47 Al 0 0.5
    下载: 导出CSV

    表  3  CFRP/Al复合材料叠层短柱试验结果

    Table  3.   Test results of CFRP/Al composite stub column

    NumberA/mm2FT/kNσT/MPadp/mmdu/mmData validityρ/(g·cm−3)
    60-A 951.56 175.20 184.12 2.19 2.27 valid 1.31
    60-B 880.13 186.50 211.90 2.03 2.31 valid 1.40
    70-A 952.28 192.80 208.37 2.23 2.28 valid 1.31
    70-B 926.53 183.64 198.20 1.93 2.01 valid 1.35
    80-A 939.81 171.90 182.92 1.55 6.18 valid 1.33
    80-B 915.66 156.35 170.75 7.53 9.73 invalid 1.36
    Average 930.06 182.01 197.10 1.99 1.34
    Notes:A is the nominal section area of the specimen; FT and σT are the peak load and peak stress of tests, respectively; dp and du are the peak displacement and ultimate displacement, respectively; ρ is the density of the specimen.
    下载: 导出CSV

    表  4  材料力学性能

    Table  4.   Mechanical properties

    MaterialE1/GPaE2/GPavG12/GPaf /MPaf0.1/MPaf0.2/MPa
    CFRP T800H/HT-280 157 9.1 0.38 4.8 2386 -- --
    Aluminum alloy 1070 65.7 65.7 0.3 252.69 -- 50 55
    Epoxy resin 2 -- 0.38 -- 100 -- --
    Notes:E1 and E2 are the axial modulus of elasticity and transverse modulus of elasticity, respectively; v is the Poisson's ratio; G12 is the shear modulus; f is the tensile strength; f0.1 and f0.2 are the stress corresponding to 0.1% and 0.2% residual strain, respectively.
    下载: 导出CSV

    表  5  CFRP/Al试件极限承载力对比

    Table  5.   Comparison of ultimate bearing capacity of CFRP/Al specimens

    NumberFT/kNFFE/kNer/%
    60-A 175.20 185.65 5.96
    60-B 186.50 185.65 −0.46
    70-A 192.80 181.89 −5.66
    70-B 183.64 181.89 −0.95
    80-A 171.90 179.14 4.21
    80-B 156.35 179.14 14.58
    Notes:FT and FFE are the ultimate bearing capacity of tests and refined finite element models, respectively; er is the relative error between test results and numerical results.
    下载: 导出CSV
  • [1] BELLINI C, DI COCCO V, IACOVIELLO F, et al. Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics[J]. Composite Structures,2019,225(10.):111117.1-111117.10.
    [2] LIU D F, TANG Y J, CONG W L. A review of mechanical drilling for composite laminates[J]. Composite Structures,2012,94(4):1265-1279. doi:  10.1016/j.compstruct.2011.11.024
    [3] CHAI G B, MANIKANDAN P. Low velocity impact response of fibre-metal laminates–A review[J]. Composite Structures,2014,107:363-381. doi:  10.1016/j.compstruct.2013.08.003
    [4] GENG D, LIU Y, SHAO Z, et al. Delamination formation, evaluation and suppression during drilling of composite laminates: A review[J]. Composite Structures,2019,216(5):168-186.
    [5] BOTELHO EC, SILVA RA, PARDINI LC, REZENDE MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures[J]. Materials Research,2006,9(3):247-56. doi:  10.1590/S1516-14392006000300002
    [6] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Engineering Structures,2007,29(8):1808-1823. doi:  10.1016/j.engstruct.2006.10.006
    [7] FENG P, LOUGHERY, et al. Mechanical Behavior and Design of FRP Structural Members at High and Low Service Temperatures[J]. Journal of Composites for Construction,2016.
    [8] JIA J, CHEN J, ZHOU H, et al. Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication[J]. Composites Science & Technology,2005,65(7):1139-1147.
    [9] WANG J, GU M. Wear properties and mechanisms of nylon and carbon-fiber-reinforced nylon in dry and wet conditions[J]. Journal of Applied Polymer Science,2004,93(2):789-795. doi:  10.1002/app.20483
    [10] JACOB G C, STARBUCK J M, FELLERS J F, et al. Crashworthiness of various random chopped carbon fiber reinforced epoxy composite materials and their strain rate dependence[J]. Journal of Applied Polymer Science,2006,101(3):1477-1486. doi:  10.1002/app.24224
    [11] BANK L C. Flexural and shear moduli of full-section fiber reinforced plastic (FRP) pultruded beams[J]. Journal of testing and evaluation,1989,6(2):40-45.
    [12] HERAKOVICH C T, MIRZADEH F. Properties of pultruded graphite/epoxy[J]. Journal of reinforced plastic andcomposites,1991,10:2-28. doi:  10.1177/073168449101000101
    [13] BARBERO E J, SONTI S S. Material characterization of pultruded laminates and shapes[J]. Journal of reinforced plastic and composites,1996,15:701-717. doi:  10.1177/073168449601500705
    [14] ZUREICK A, SCOTT D. Short-term behavior and design of fiber-reinforced polymeric slender members underaxial compression[J]. Journal of Composites for Construction, ASCE,1997,1(4):140-149. doi:  10.1061/(ASCE)1090-0268(1997)1:4(140)
    [15] GUADES E, ARAVINTHAN T, ISLAM M M. Characterisation of the mechanical properties of pultruded fibre-reinforced polymer tube[J]. Material and Design,2014,63:305-315. doi:  10.1016/j.matdes.2014.06.018
    [16] 杨婷慧. 铝镁叠层复合材料力学性能计算与轧制复合工艺[D]. 南京理工大学, 2010.

    YANG Tinghui. Calculation of mechanical properties and rolling composite process of aluminum magnesium laminated composite[D]. Nanjing University of technology, 2010(in Chinese).
    [17] 金明江. 叠层阻尼功能复合材料的制备和性能研究[D]. 江苏大学, 2005.

    JIN Mingjiang. Preparation and properties of laminated damping functional composites[D]. Jiangsu University, 2005(in Chinese).
    [18] 隋国鑫. 周本镰. 郑宗光等. 维尼纶增强铝合金叠层板(VIRALL)一种新型超混杂复合材料[J]. 材料科学进展, 1993, 17(4):365-367.

    SUI Guoxin, ZHOU Benfu, ZHENG Zongguang, et al. Vigny fiber reinforced aluminum alloy laminated plate (VIRALL), a new type of super hybrid composite[J]. progress in materials science,1993,17(4):365-367(in Chinese).
    [19] CORTES P, CANTWELL W J. The prediction of tensile failure in titanium-based thermoplastic fiber–metal laminates[J]. Composites Science and Technology,2006,66(13):2306-2316. doi:  10.1016/j.compscitech.2005.11.031
    [20] 解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性[J]. 复合材料学报, 2018, 35(12):3261-3270.

    XIE Jiang, ZHANG Xuehan, SONG Shanshan, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression[J]. Acta Materiae Compositae Sinica,2018,35(12):3261-3270(in Chinese).
    [21] 李峰, 刘加顺, 张恒铭. 复合材料圆柱壳的轴压屈曲失效试验[J]. 复合材料学报, 2016, 33(7):14841-491.

    LI Feng, LIU Jiashun, ZHANG Hengming. Experiments on the buckling behavior of composite cylindrical shells subject to axial compression[J]. Acta Materiae Compositae Sinica,2016,33(7):14841-491(in Chinese).
    [22] 李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):14841-491.

    LI Weidong, ZHANG Jindong, LIU Gang, et al. Interfacial and mechanical properties of domestic T800 carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):14841-491(in Chinese).
    [23] 沈观林, 胡更开. 复合材料力学[M]. 清华大学出版社, 2006.

    SHEN Guanlin, HU Genkai. Composite mechanics[M]. Tsinghua University Press, 2006(in Chinese).
    [24] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 机械工业出版社, 2006.

    SHI Yiping, ZHOU Yurong. Detailed explanation of ABAQUS finite element analysis examples[M]. China Machine Press, 2006(in Chinese).
  • [1] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [2] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [3] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. 2020, 37(7): 1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [4] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [5] 黄鑫, 姜景山, 孙天洋, 蒋威.  玄武岩-碳纤维/矿渣混凝土力学性能正交试验, 复合材料学报. 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
    [6] 胡晓兰, 刘文军, 余荣禄, 周川, 李伟东, 周玉敬, 刘刚, 益小苏.  含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料, 复合材料学报. 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
    [7] 李果, 欧阳婷, 蒋朝, 陈云博.  碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征, 复合材料学报. 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002
    [8] 丁颖慧, 祁国成, 张博明.  结构储电碳纤维复合材料研究进展, 复合材料学报. 2020, 37(): 1-9.
    [9] 邢丽英, 冯志海, 包建文, 礼嵩明.  碳纤维及复合材料产业发展面临的机遇与挑战, 复合材料学报. 2020, 37(): 1-7.
    [10] 曹金营, 曹贺, 欧阳求保, 张荻.  多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.002
    [11] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报. 2020, 37(): 1-12.
    [12] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [13] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [14] 罗健, 石建军, 贾彬, 莫军, 黄辉.  低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响, 复合材料学报. 2020, 37(12): 1-12.
    [15] 杨涛, 刘润爱, 王文先, 连俊杰, 郑凡林, 陈洪胜.  热轧高含量B4C颗粒增强Al基复合材料的成形性能, 复合材料学报. 2020, 37(): 1-10.
    [16] 李哲, 黄尧, 吴刚强, 杜宇, 范晓静, 吴大鸣.  基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能, 复合材料学报. 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002
    [17] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [18] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [19] 刘平, 王相玉, 黄舟.  泡沫填充蜂窝材料动态力学性能的物质点法模拟, 复合材料学报. 2020, 37(9): 2230-2239. doi: 10.13801/j.cnki.fhclxb.20191224.001
    [20] 田会文, 周臻, 陆纪平, 彭振.  纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟, 复合材料学报. 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001
  • 加载中
计量
  • 文章访问数:  269
  • HTML全文浏览量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-24
  • 网络出版日期:  2020-09-29

目录

    /

    返回文章
    返回