留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制

高顺 郭正虹

高顺, 郭正虹. 纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制[J]. 复合材料学报, 2020, 37(11): 1-11
引用本文: 高顺, 郭正虹. 纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制[J]. 复合材料学报, 2020, 37(11): 1-11
Shun GAO, Zhenghong GUO. Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends[J]. Acta Materiae Compositae Sinica.
Citation: Shun GAO, Zhenghong GUO. Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends[J]. Acta Materiae Compositae Sinica.

纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制

基金项目: 国家自然科学基金(51991355)
详细信息
    通讯作者:

    郭正虹,博士,副教授,主要从事阻燃高分子复合材料的研究 Tel:057488130140; E-maill:guozhenghong@nit.zju.edu.cn

  • 中图分类号: TB324

Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends

  • 摘要: 选用以凝聚相阻燃机制为主的间苯二酚-双(二苯基磷酸酯)(RDP)作为阻燃剂,纳米SiO2为协效剂,以熔融共混法制备了聚碳酸酯(PC)-丙烯腈-丁二烯-苯乙烯共聚物(ABS)阻燃合金。通过垂直燃烧(UL94)和锥形量热测试(Cone)探究了纳米SiO2与RDP复配对PC-ABS合金阻燃性能和燃烧行为的影响。采用SEM观察燃烧残炭的微观形貌,用EDS分析炭层表面元素含量的变化,进一步探究了纳米SiO2与RDP在PC-ABS凝聚相中的协效阻燃机制。通过拉伸性能和冲击性能测试研究纳米SiO2与RDP复配对PC-ABS合金力学性能的影响及甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)对合金的增韧增容作用。结果表明,纳米SiO2与RDP可以在凝聚相中形成Si—O—P化合物,对PC-ABS合金的燃烧炭层起到增强作用,从而改善了PC-ABS合金的阻燃性能;适量MBS的加入可以提高合金的冲击强度和断裂伸长率,但会降低其阻燃性能。
  • 图  1  阻燃SiO2-RDP/PC-ABS合金的热释放速率(a)、质量损失(b)、总热释放量(c)、总生烟量(d)、烟释放速率(e)、CO生成率(f)和CO2生成率(g)曲线

    Figure  1.  Heat release rate(a),mass loss(b),total heat release(c),total smoke release(d),smoke production rate(e),volume fraction of CO(f) and volume fraction of CO2(g) curves of flame retardant SiO2-RDP/PC-ABS blends

    图  2  10RDP/PC-ABS((a),(b),(c))、1SiO2-10RDP/PC-ABS((d),(e),(f))和1SiO2/PC-ABS((g),(h),(i))燃烧残炭形貌

    Figure  2.  Morphology of char residues of 10RDP/PC-ABS((a),(b),(c)),1SiO2-10RDP/PC-ABS((d),(e),(f)) and 1SiO2/PC-ABS((g),(h),(i)) after Cone tests

    图  3  10RDP/PC-ABS(a)、1SiO2-10RDP/PC-ABS(b)和1SiO2/PC-ABS(c)燃烧残炭的SEM图像

    Figure  3.  SEM images of char residues for 10RDP/PC-ABS(a),1SiO2-10RDP/PC-ABS(b) and 1SiO2/PC-ABS(c) after Cone tests

    图  4  1SiO2-10RDP/PC-ABS燃烧残炭表面的P元素(a)和Si元素(b)分布

    Figure  4.  P distribution(a) and Si distribution(b) of char residues for 1SiO2-10RDP/PC-ABS after Cone tests

    图  5  1SiO2-10RDP/PC-ABS合金的缺口冲击强度和拉伸强度(a)、断裂伸长率和弹性模量(b)和应力应变(c)随MBS添加量变化曲线

    Figure  5.  Izod impact strength and tensile strength(a), elongation at break and tensile modulus(b) and stress-strain(c) as the function of MBS loading for flame retardant 1SiO2-10RDP/PC-ABS blends

    图  6  PC-ABS((a),(b))、10RDP/PC-ABS((c),(d))、1SiO2-10RDP/PC-ABS((e),(f))和1SiO2-10RDP-20MBS/PC-ABS((g),(h))缺口冲击断面的SEM图像

    Figure  6.  SEM images for PC-ABS((a),(b))、10RDP/PC-ABS((c),(d))、1SiO2-10RDP/PC-ABS((e),(f)) and 1SiO2-10RDP-20MBS/PC-ABS((g),(h))

    表  1  阻燃SiO2-RDP-MBS/PC-ABS合金配比(质量分数/wt%)

    Table  1.   Formulations of flame retardant SiO2-RDP-MBS/PC-ABS blends (Mass fraction/wt%)

    Sample IDPCABSRDPSiO2PTFEMBS
    10RDP/PC-ABS 62.7 26.9 10 0.4
    0.5SiO2-10RDP/PC-ABS 62.4 26.7 10 0.5 0.4
    1SiO2-10RDP/PC-ABS 62.0 26.6 10 1 0.4
    2SiO2-10RDP/PC-ABS 61.3 26.3 10 2 0.4
    3SiO2-10RDP/PC-ABS 60.6 26.0 10 3 0.4
    4SiO2-10RDP/PC-ABS 59.9 25.7 10 4 0.4
    5SiO2-10RDP/PC-ABS 58.9 25.2 10 5 0.4
    6SiO2-10RDP/PC-ABS 58.5 25.1 10 6 0.4
    7SiO2-10RDP/PC-ABS 57.8 24.8 10 7 0.4
    1SiO2/PC-ABS 69.0 29.6 1 0.4
    1SiO2-10RDP-5MBS/PC-ABS 58.5 25.1 10 1 0.4 5
    1SiO2-10RDP-10MBS/PC-ABS 55.0 23.6 10 1 0.4 10
    1SiO2-10RDP-15MBS/PC-ABS 51.5 22.1 10 1 0.4 15
    1SiO2-10RDP-20MBS/PC-ABS 48.0 20.6 10 1 0.4 20
    1SiO2-10RDP-25MBS/PC-ABS 44.5 19.1 10 1 0.4 25
    PC—Polycarbonate; ABS—Acrylonitrile-butadiene-styrene copolymer; RDP—Resorcinol bis(diphenylphosphate); PTFE—Polytetrafluoroethylene; MBS—Methyl methacrylate-butadiene-styrene copolymer
    下载: 导出CSV

    表  2  阻燃SiO2-RDP-MBS/PC-ABS合金的UL94测试结果

    Table  2.   UL94 results for flame retardant SiO2-RDP-MBS/PC-ABS blends

    Sample ID$\bar t$1/s$\bar t$2/s$\bar t$1+$\bar t$2/sDripping/(Yes/No)UL94
    10RDP/PC-ABS 12.1 20.3 32.4 N V-1
    0.5SiO2-10RDP/PC-ABS 21.4 24.5 45.9 N V-1
    1SiO2-10RDP/PC-ABS 3.1 8.9 12.0 N V-0
    2SiO2-10RDP/PC-ABS 11.3 31.4 42.7 N V-1
    3SiO2-10RDP/PC-ABS 16.8 26.1 42.9 N V-1
    4SiO2-10RDP/PC-ABS 25.7 38.7 64.4 N V-1
    5SiO2-10RDP/PC-ABS >30 >60 >60 Y No-rating
    6SiO2-10RDP/PC-ABS >30 >60 >60 Y No-rating
    7SiO2-10RDP/PC-ABS >30 >60 >60 Y No-rating
    1SiO2/PC-ABS >30 >60 >60 N No-rating
    1SiO2-10RDP-5MBS/PC-ABS 16.2 24.5 40.7 N V-1
    1SiO2-10RDP-10MBS/PC-ABS 31.3 50.4 81.7 N V-2
    1SiO2-10RDP-15MBS/PC-ABS >30 >60 >60 Y No-rating
    1SiO2-10RDP-20MBS/PC-ABS >30 >60 >60 Y No-rating
    1SiO2-10RDP-25MBS/PC-ABS >30 >60 >60 Y No-rating
    t1—Self-extinguishing time after the first ignition; t2—Self-extinguishing time after the second ignition
    下载: 导出CSV

    表  3  阻燃SiO2-RDP/PC-ABS合金的锥形量热测试结果

    Table  3.   Cone data for flame retardant SiO2-RDP/PC-ABS blends

    Sample ID10RDP/PC-ABS1SiO2-10RDP/PC-ABS1SiO2/PC-ABS
    tign/s 41.5±0.5 42.0±1.0 38.5±0.5
    tPHRR/s 155.0±5.0 167.5±2.5 70±0.1
    PHRR/(kW·m−2) 444.8±22.3 379.1±5.4 566.1±16.8
    THR/(MJ·m−2) 68.2±0.4 70.4±1.5 92.0±1.3
    AHRR/(kW·m−2) 135.9±2.1 142.7±0.6 224.3±2.3
    AMLR/(g·s−1) 0.060±0.001 0.062±0.002 0.082±0.002
    AEHC/(MJ·kg−1) 19.9±0.1 20.4±0.6 24.5±0.4
    ASEA/(m2·kg−1) 1048.1±35.8 1068.0±15.1 838.2±45.4
    ACOY/(kg·kg−1) 0.146±0.001 0.156±0.002 0.083±0.001
    ACO2Y/(kg·kg−1) 1.383±0.001 1.382±0.014 1.738±0.041
    TSR/(m2·m−2) 3592.1±102.9 3682.1±85.3 3156.6±182.8
    CHR/% 6.86±0.03 6.94±0.53 5.76±0.98
    FGI/(kW·m−2·s−1) 2.87 2.26 8.09
    FPI/(m2·s·kW−1) 0.093 0.110 0.068
    tign—Time to ignition; tPHRR—Time to PHRR; PHRR—Peak heat release rate; THR—Total heat release at 600 s; AHRR—Average heat release rate; AMLR—Average mass loss rate; AEHC—Average effective heat of combustion; ASEA—Average specific extinction area; ACOY—Average yield of CO; ACO2Y—Average yield of CO2; TSR—Total smoke release; CHR—Char residue; FGI—Fire spread index; FPI—Fire performance index
    下载: 导出CSV

    表  4  锥形量热燃烧残渣的元素分析数据

    Table  4.   The EDS analysis of char residues after Cone tests

    Sample IDElement/at%
    COPSi
    1SiO2/PC-ABS 83.89 16.09 0.03
    10RDP/PC-ABS 79.44 18.02 2.54
    1SiO2-10RDP/PC-ABS 54.17 36.71 7.24 1.88
    下载: 导出CSV

    表  5  阻燃SiO2-RDP-MBS/PC-ABS合金的缺口冲击强度、拉伸强度、断裂伸长率和弹性模量测试结果

    Table  5.   Izod impact strength、tensil strength、elongation at break and tensile modulus tests for flame retardant SiO2-RDP-MBS/PC-ABS blends

    Sample IDIzod impact strength/(kJ·m−2)Tensile strength/MPaElongation at break/%Tensile modulus/MPa
    10RDP/PC-ABS 8.6±2.4 51.4±2.8 19.2±5.1 838.7±146.2
    1SiO2-10RDP/PC-ABS 6.0±1.1 50.9±3.7 18.6±3.1 893.2±168.4
    1SiO2-10RDP-5MBS/PC-ABS 8.1±0.6 47.8±2.4 14.9±3.1 372.2±366.1
    1SiO2-10RDP-10MBS/PC-ABS 13.1±3.5 39.8±2.9 25.1±6.8 504.1±84.6
    1SiO2-10RDP-15MBS/PC-ABS 15.4±1.5 36.9±2.9 37.9±5.8 406.2±178.5
    1SiO2-10RDP-20MBS/PC-ABS 26.8±3.5 32.3±3.3 29.1±4.1 414.9±105.9
    1SiO2-10RDP-25MBS/PC-ABS 23.1±0.9 27.7±2.6 24.5±8.1 468.1±149.1
    下载: 导出CSV
  • [1] LEE E J, PARK H J, KIM S M, et al. Effects of molecular weight of PC on mechanical properties of PC/ABS blends using high-shear rate processing[J]. Korean Chemical Engineering Research,2018,56(3):343-348.
    [2] PAWLOWSKI K H, SCHARTEL B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol a polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymer Degradation and Stability,2008,93(3):657-667. doi:  10.1016/j.polymdegradstab.2008.01.002
    [3] 朱世东, 徐自强, 何敏, 等. 纳米材料国内外研究进展-纳米材料的应用与制备方法[J]. 热处理技术与装备, 2010, 31(4):1-8. doi:  10.3969/j.issn.1673-4971.2010.04.001

    ZHU Shidong, XU Ziqiang, HE Min, et al. Research progress of nanomaterials at home and abroad - application and preparation of nanomaterials[J]. Heat Treatment Technology and Equipment,2010,31(4):1-8(in Chinese). doi:  10.3969/j.issn.1673-4971.2010.04.001
    [4] BEE S T, LIM K S, SIN L T, et al. Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of PC/ABS composites[J]. Iranian Polymer Journal,2018,27(11):899-911. doi:  10.1007/s13726-018-0664-z
    [5] ZHANG W, LI Y G, MA H J, et al. Novel phosphorus-nitrogen-silicon copolymers with double-decker silsesquioxane in the main chain and their flame retardancy application in PC/ABS[J]. Fire and Materials,2018,42(8):946-957. doi:  10.1002/fam.2649
    [6] WEI P, TIAN G H, YU H Z, et al. Synthesis of a novel organic-inorganic hybrid mesoporous silica and its flame retardancy application in PC/ABS[J]. Polymer Degradation and Stability,2013,98(5):1022-1029. doi:  10.1016/j.polymdegradstab.2013.02.006
    [7] ZHENG K, CHEN L, LI Y, et al. Praparation and thermal properties of silica-graft-acrylonitrile-butadiene-styrene nanocomposites[J]. Polymer Engineering and Science,2004,44(6):1077-1082. doi:  10.1002/pen.20100
    [8] 徐晓楠, 卢林刚, 殷全明, 等. 四苯基双酚A二磷酸酯及复配纳米SiO2体系阻燃PC/ABS合金的热动力学分析[J]. 火灾科学, 2009, 18(2):95-100. doi:  10.3969/j.issn.1004-5309.2009.02.008

    XU Xiaonan, LU Lingang, YIN Quanming, et al. Thermo dynamic analysis of flame retardant PC/ABS alloy with tetraphenylbisphenol a diphosphate and nano-SiO2[J]. Fire Science,2009,18(2):95-100(in Chinese). doi:  10.3969/j.issn.1004-5309.2009.02.008
    [9] 钟柳, 刘治国, 欧育湘. BDP阻燃PC/ABS及其复合材料的阻燃性和热降解动力学[J]. 中国塑料, 2008, 22(5):25-29.

    ZHONG Liu, LIU Zhiguo, OU Yuxiang. Flame retardancy and thermal degradation kinetics of BDP flame retardant PC/ABS and its composites[J]. China Plastics,2008,22(5):25-29(in Chinese).
    [10] JANG B N, WILKIE C A. The thermal degradation of bisphenol A polycarbonate in air[J]. Thermochimica Acta,2005,426(1):73-84.
    [11] REALINHO V, HAURIE L, FORMOSA J, et al. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene[J]. Polymer Degradation and Stability,2018,155:208-219. doi:  10.1016/j.polymdegradstab.2018.07.022
    [12] FENG J, CARPANESE C, FINA A. Thermal decomposition investigation of ABS containing Lewis-acid type metal salts[J]. Polymer Degradation and Stability,2016,129:319-327. doi:  10.1016/j.polymdegradstab.2016.05.013
    [13] PAPASPYRIDES C D, KILIARIS P. Polymer Green Flame Retardants[M]. 2014.
    [14] QI Z, ZHANG W, HE X, et al. High-efficiency flame retardency of epoxy resin composites with perfect T8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs)[J]. Composites Science and Technology,2016,127(11):8-19.
    [15] MONTERO B, RAMIREZ C, RICO M, et al. Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system[J]. Polymer International,2010,59(1):112-118. doi:  10.1002/pi.2698
    [16] LIU Y L, CHOU C I. The effect of silicon sources on the mechanism of phosphoruse-silicon synergism of flame retardation of epoxy resins[J]. Polymer Degradation and Stability,2005,90(3):515-522. doi:  10.1016/j.polymdegradstab.2005.04.004
    [17] 王德义. 含磷共聚酯/无机纳米复合材料的制备、性能与阻燃机理研究[D]. 成都, 四川大学, 2007.

    WANG Deyi. Preparation, properties and flame retardant mechanism of phosphorus containing copolyester/inorganic nanocomposites[D]. Chengdu, Sichuan University, 2007 (in Chinese).
    [18] YANG F, NELSON G L. PMMA/silica nanocomposite studies: synthesis and properties[J]. Journal of Applied Polymer Science,2004,91(6):3844-3850. doi:  10.1002/app.13573
    [19] 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价-锥形量热仪法[J]. 高分子材料科学与工程, 1998, 14(5):15-19. doi:  10.3321/j.issn:1000-7555.1998.05.004

    LI Bin, WANG Jianqi. Evaluation of flammability and flame retardancy of polymer materials-CONE[J]. Polymer Materials Science and Engineering,1998,14(5):15-19(in Chinese). doi:  10.3321/j.issn:1000-7555.1998.05.004
    [20] KASHIWAGI T, GILMAN J W, BUTLER K M, et al. Flame retardant mechanism of silica gel/silica[J]. Fire and Materials,2000,24(6):277-289. doi:  10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A
    [21] CHIANG C L, MA C C. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites[J]. Polymer Degradation and Stability,2004,83(2):207-214. doi:  10.1016/S0141-3910(03)00262-3
    [22] SONG R J, ZHANG B Y, HUANG B T, et al. Effect of fillers on the fire retardancy of intumescent polypropylene compounds[J]. Journal of Applied Polymer Science,2006,102:5988-5993. doi:  10.1002/app.25178
    [23] SPONTON M, MERCADO L A, RONGDA J C, et al. Preparation, thermal properties and flame retardancy of phosphorus and silicon containing epoxy resins[J]. Polymer Degradation and Stability,2008,93(11):2025-2031. doi:  10.1016/j.polymdegradstab.2008.02.014
    [24] LI J, WEI P, LI L K, et al. Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene[J]. Fire and Materials,2011,35(2):83-91. doi:  10.1002/fam.1040
    [25] 徐晓楠, 张健. 二氧化硅对膨胀型阻燃聚乙烯的性能影响研究[J]. 火灾科学, 2004, 13(3):159-172.

    XU Xiaonan, ZHANG Jian. Effect of silica on the properties of intumescent flame retardant polyethylene[J]. Fire Science,2004,13(3):159-172(in Chinese).
    [26] DEMIR H, ARLAS E, BALKOSE D, et al. Synergistic effect of natural zeolites on flame retardant additives[J]. Polymer Degradation and Stability,2005,89(3):478-483. doi:  10.1016/j.polymdegradstab.2005.01.028
    [27] PICOUET P A, FERNANDEZ A, REALINI C E, et al. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage inmodified atmospheres[J]. Meat Science,2014,96(1):574-580. doi:  10.1016/j.meatsci.2013.07.020
  • [1] 陈宇飞, 代国庆, 田麒源, 董磊, 崔巍巍, 滕成君.  Al2O3与两种热塑性树脂协同改性双马来酰亚胺基复合材料微观结构与性能, 复合材料学报. 2020, 37(6): 1260-1267. doi: 10.13801/j.cnki.fhclxb.20190925.001
    [2] 董晓星, 金明生, 王礼明, 康杰, 朱栋杰, 计时鸣.  用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
    [3] 周可可, 唐亚丽, 卢立新, 潘嘹, 丘晓琳.  氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能, 复合材料学报. 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003
    [4] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [5] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [6] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [7] 薛彦庆, 郝启堂, 李新雷, 魏典, 李博, 余量量.  Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [8] 曹金营, 曹贺, 欧阳求保, 张荻.  多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.002
    [9] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [10] 孙伟, 柏跃磊, 张强, 刘玉坤, 朱春城.  碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能, 复合材料学报. 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
    [11] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [12] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [13] 陈宇飞, 武耘仲, 代国庆, 李治国, 滕成君, 崔巍巍.  SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能, 复合材料学报. 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
    [14] 周茜, 张瑶, 陈蓉, 沈佳斌, 郭少云.  SiO2表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响, 复合材料学报. 2020, 37(9): 2144-2151. doi: 10.13801/j.cnki.fhclxb.20191219.002
    [15] 武壮壮, 马国佳, 崔向中, 刘星.  微纳结构超疏水表面的浸润性及防冰性能, 复合材料学报. 2020, 37(): 1-7.
    [16] 丁春香, 潘明珠, 杨舒心, 梅长彤.  基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为, 复合材料学报. 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
    [17] 段聪, 房轶群, 王奉强, 于云鹏, 权大通, 张显权, 王清文.  纳米氮化硼与氧化锌协效阻燃WF-PVC复合材料, 复合材料学报. 2020, 37(): 1-8.
    [18] 汤连东, 吴袁泊, 袁利萍, 胡云楚, 刘月姣, 范友华.  磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用, 复合材料学报. 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
    [19] 陈博, 房轶群, 司月月, 王奉强, 邵博, 宋永明, 王清文.  胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能, 复合材料学报. 2020, 37(): 1-10.
    [20] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
  • 加载中
计量
  • 文章访问数:  170
  • HTML全文浏览量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-28
  • 录用日期:  2020-02-02
  • 网络出版日期:  2020-09-25

目录

    /

    返回文章
    返回