留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银/聚乙烯醇复合物的生物合成及其对6种水产病原菌的抑菌活性

魏亚楠 马新冉 齐珈俪 王先钰 刘晓玲 王磊

魏亚楠, 马新冉, 齐珈俪, 等. 纳米银/聚乙烯醇复合物的生物合成及其对6种水产病原菌的抑菌活性[J]. 复合材料学报, 2021, 38(11): 3808-3817. doi: 10.13801/j.cnki.fhclxb.20210210.006
引用本文: 魏亚楠, 马新冉, 齐珈俪, 等. 纳米银/聚乙烯醇复合物的生物合成及其对6种水产病原菌的抑菌活性[J]. 复合材料学报, 2021, 38(11): 3808-3817. doi: 10.13801/j.cnki.fhclxb.20210210.006
WEI Yanan, MA Xinran, QI Jiali, et al. Biosynthesis of silver nanoparticles/polyvinyl alcohol composite and its antibacterial activity against six aquatic pathogens[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3808-3817. doi: 10.13801/j.cnki.fhclxb.20210210.006
Citation: WEI Yanan, MA Xinran, QI Jiali, et al. Biosynthesis of silver nanoparticles/polyvinyl alcohol composite and its antibacterial activity against six aquatic pathogens[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3808-3817. doi: 10.13801/j.cnki.fhclxb.20210210.006

纳米银/聚乙烯醇复合物的生物合成及其对6种水产病原菌的抑菌活性

doi: 10.13801/j.cnki.fhclxb.20210210.006
基金项目: 山东省重点研发计划(2019GSF107091);山东省自然科学基金项目(ZR2020MC135);山东省海洋与渔业科技创新计划(2017YY04)
详细信息
    通讯作者:

    王磊,博士,教授,研究方向为纳米技术在病害防控中的应用  E-mail:wanglei9909@163.com

  • 共同作者:魏亚楠和马新冉为共同第一作者,对本文具有同等贡献
  • 中图分类号: TB333

Biosynthesis of silver nanoparticles/polyvinyl alcohol composite and its antibacterial activity against six aquatic pathogens

  • 摘要: 纳米银作为一种新型抑菌剂有望成为传统抑菌剂的替代品,制备稳定、高效、环保的新型纳米银抑菌产品成为当今的研究热点。本研究以葡萄籽提取液为还原剂和稳定剂,聚乙烯醇(PVA)为载体,采用一步法“绿色”生物合成出一种纳米银/聚乙烯醇复合物(AgNPs/PVA)。通过紫外-可见(UV-Vis)吸收光谱、透射电镜(TEM)、X射线衍射(XRD)等手段对合成产物进行了表征。结果表明银离子被葡萄籽提取物成功还原成纳米银并附着在PVA的表面,纳米银颗粒均匀,呈现单分散状态,粒径较小,平均粒径为14 nm左右。AgNPs/PVA对鳗弧菌、溶藻弧菌、副溶血弧菌、哈维氏弧菌、灿烂弧菌及点状气单胞菌等6种典型的水产病原菌均有显著的抑菌效果。以溶藻弧菌为指示菌,AgNPs/PVA的最小抑菌浓度(MIC)为1.1 μg/mL,最小杀菌浓度(MBC)为2.2 μg/mL。AgNPs/PVA的Zeta电位为−24.1 mV,表明纳米银颗粒间有很强的排斥力,为其稳定分散提供保障,后续实验证明制备的AgNPs/PVA具有良好的稳定性和热稳定性。以上研究结果表明,AgNPs/PVA复合材料在水产养殖病害防治中具有广阔的应用前景。

     

    1)  共同作者:魏亚楠和马新冉为共同第一作者,对本文具有同等贡献
  • 图  1  (a)葡萄籽提取液、聚乙烯醇(PVA)和纳米银/聚乙烯醇复合物 (AgNPs/PVA)的照片;(b)葡萄籽提取液、PVA和AgNPs/PVA的紫外吸收光谱

    1—Grape seeds extract; 2—PVA; 3—AgNPs/PVA

    Figure  1.  (a) Photograph of aqueous suspension of grape seeds extract, polyvinyl alcohol (PVA) and silver nanoparticles/polyvinyl alcohol (AgNPs/PVA) composites;(b) UV-Vis absorption spectra of grape seeds extract, PVA and AgNPs/PVA

    图  2  AgNPs/PVA透射电镜图像(a)与粒径分布图(b)

    Figure  2.  TEM images of AgNPs/PVA (a) and their particle size distributionsize (b)

    图  3  AgNPs/PVA的XRD图谱

    Figure  3.  X-ray diffraction pattern of AgNPs/PVA

    图  4  AgNPs/PVA对6种水产病原菌的抑菌圈实验

    1—AgNPs/PVA; 2—AgNPs; 3—Grape seeds extract; 4—Normal saline

    Figure  4.  Inhibition zone test of 6 aquatic pathogens of AgNPs/PVA

    图  5  不同浓度AgNPs/PVA作用下溶藻弧菌的生长曲线

    Figure  5.  Growth curve of V. alginolyticus treated with different concentrations of AgNPs/PVA

    图  6  AgNPs/PVA对溶藻弧菌核酸内容物泄露的影响

    Figure  6.  Effects of AgNPs/PVA on the release of nucleic acid contents from V. alginolyticus

    图  7  AgNPs/PVA的Zeta电位

    Figure  7.  Zeta potential of AgNPs/PVA

    图  8  AgNPs/PVA热处理后的照片

    1—20℃; 2—40℃; 3—60℃; 4—80℃; 5—100℃

    Figure  8.  Thermal stability test of AgNPs/PVA

    图  9  AgNPs/PVA的抑菌热稳定性实验

    1—20℃; 2—40℃; 3—60℃; 4—80℃; 5—100℃ ;6—Grape seeds extract

    Figure  9.  Antibacterial thermal stability test of AgNPs/PVA

    表  1  AgNPs/PVA对6种水产致病菌的抑菌圈直径的统计结果(n=3)

    Table  1.   Statistics of the inhibition zones of 6 aquatic pathogenic bacteria of AgNPs/PVA (n=3)

    Aquatic pathogensInhibition zone/mm
    AgNPs/PVAAgNPsGrape seeds extractNormal saline
    V.splendidus 17.7±0.3 15.9±0.7 0 0
    V. harveyi 17.6±0.2 16.2±0.2 0 0
    V. anguillarum 20.3±0.4 17.2±0.3 0 0
    V. alginolyticus 21.5±0.6 16.0±0.2 0 0
    V. parahaemolyticus 19.3±0.1 17.1±0.4 0 0
    A. Punctata 17.4±0.4 16.4±0.4 0 0
    下载: 导出CSV

    表  2  AgNPs/PVA复合物对溶藻弧菌最小抑菌浓度和最小杀菌浓度的测定

    Table  2.   MIC and MBC tests of AgNPs/PVA composites against V. alginolyticus

    LabelConcentration of
    AgNPs/PVA/(μg·mL−1)
    24 h48 h
    1 137.5
    2 68.8
    3 34.4
    4 17.2
    5 8.6
    6 4.3
    7 2.2
    8 1.1 +
    9 0.6 + +
    10 0.3 + +
    Negative control
    Positive control + +
    下载: 导出CSV

    表  3  葡萄籽生物合成AgNPs单体对溶藻弧菌最小抑菌浓度和最小杀菌浓度的测定

    Table  3.   MIC and MBC tests of AgNPs against V. alginolyticus

    LabelConcentration of
    AgNPs/(μg·mL−1)
    24 h48 h
    1 65.5
    2 32.8
    3 16.4
    4 8.2
    5 4.1
    6 2.0
    7 1.0 +
    8 0.5 + +
    9 0.2 + +
    10 0.1 + +
    Negative control
    Positive control + +
    下载: 导出CSV
  • [1] ZHU F. A review on the application of herbal medicines in the disease control of aquatic animals[J]. Aquaculture,2020,526:735422. doi: 10.1016/j.aquaculture.2020.735422
    [2] 胡梁及, 朱盛山, 彭亮, 等. 水产养殖中药物滥用的危害及问题分析[J]. 水产学杂志, 2015, 28(2):47-54. doi: 10.3969/j.issn.1005-3832.2015.02.011

    HU Liangji, ZHU Shengshan, PENG Liang, et al. The harm and problem analysis of drug abuse in aquaculture[J]. Chinese Journal of Fisheries,2015,28(2):47-54(in Chinese). doi: 10.3969/j.issn.1005-3832.2015.02.011
    [3] DANKOVICH T A, GRAY D G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment[J]. Environmental Science & Technology,2011,45(5):1992-1998.
    [4] WEI Y, WANG L R, ZHAO J, et al. Recyclable, non-leaching antimicrobial magnetic nanoparticles[J]. Chinese Chemical Letters,2019,30(12):2047-2050. doi: 10.1016/j.cclet.2019.06.010
    [5] WANG A Z, LANGER R, FAROKHZAD O C. Nanoparticle delivery of cancer drugs[J]. Annual Review of Medicine,2012,63(1):185-198. doi: 10.1146/annurev-med-040210-162544
    [6] AYEKPAM B D, DINESH S M, NARAYAN C T, et al. Novel synthesis and characterization of CuO nanomaterials: Biological applications[J]. Chinese Chemical Letters,2014,25(12):1615-1619. doi: 10.1016/j.cclet.2014.07.014
    [7] KHANNA P K, SINGH N, CHARAN S, et al. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method[J]. Materials Chemistry & Physics,2005,93(1):117-121.
    [8] PANACEK A, KVITEK L, PRUCEK R, et a1. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity[J]. Journal of Physical Chemistry B,2006,110(33):16248-16253. doi: 10.1021/jp063826h
    [9] CHALOUPKA K, MALAM Y, SEIFALIAN A M. Nanosilver as a new generation of nanoproduct in biomedical applications[J]. Trends Biotechnol,2010,28(11):580-588. doi: 10.1016/j.tibtech.2010.07.006
    [10] 于嘉伦, 徐丹, 任丹, 等. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20):3489-3495. doi: 10.11896/j.issn.1005-023X.2018.20.001

    YU Jialun, XU Dan, REN Dan, et al. Conparisons in the structures and properties of silver nanoparticles synthesized by amakusa peels and sodium borhydride[J]. Materials Reports,2018,32(20):3489-3495(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.20.001
    [11] SHEKHAR A, SOUMYO M, SUPARNA M. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy[J]. RSC Advances,2014(4):3974-3983.
    [12] BEYENE H D, WERKNEH A A, BEZABH H K, et al. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review[J]. Sustainable Materials and Technologies,2017(13):18-23.
    [13] RAVICHANDARAN V, VASANTHI S, SHALINI S, et al. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity[J]. Materials Letters,2016,180:264-267. doi: 10.1016/j.matlet.2016.05.172
    [14] SUN Q, CAI X, LI J W, et al. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,444(4):226-231.
    [15] 罗应, 李彦青, 李永川, 等. 基于柠檬提取液的银纳米颗粒绿色制备工艺优化[J]. 食品工业科技, 2018, 39(12):194-199.

    LUO Ying, LI Yanqing, LI Yongchuan, et al. Optimization of preparation technology for silver nanoparticles using lemon juice[J]. Science and Technology of Food Industry,2018,39(12):194-199(in Chinese).
    [16] 姜宇, 李福艳, 刘冲冲, 等. 山楂提取物生物合成纳米银对四种常见水产病原菌的抑制作用[J]. 海洋与湖沼, 2016, 47(1):253-260.

    JIANG Yu, LI Fuyan, LIU Chongchong, et al. Biosynthesized silver nanoparticles using hawthorn fruit extract and their antibacterial activity against four common aquatic pathogens[J]. Ceanologia et Limnologia Sinica,2016,47(1):253-260(in Chinese).
    [17] 刘冲冲, 王磊, 徐慧, 等. 姜提取物生物合成纳米银抑菌活性的研究[J]. 食品与生物技术学报, 2017, 36(6):590-597. doi: 10.3969/j.issn.1673-1689.2017.06.005

    LIU Chongchong, WANG Lei, XU Hui, et al. Antibacterial study of silver nanoparticles biosynthesized with ginger extract[J]. Journal of Food Science and Biotechnology,2017,36(6):590-597(in Chinese). doi: 10.3969/j.issn.1673-1689.2017.06.005
    [18] SUBRAMANIAN M, ALIKUNHI N M, KANDASAMY K. In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment[J]. Advanced Science Letters,2010,3(4):428-433. doi: 10.1166/asl.2010.1168
    [19] BAGCHI D, BAGCHI M, STOHS S J, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention[J]. Toxicology,2000,148(2-3):187-197. doi: 10.1016/S0300-483X(00)00210-9
    [20] 司华艳, 毛晨憬, 谢雅萌, 等. PVP辅助制备单分散纳米银颗粒研究[J]. 石家庄学院学报, 2017, 19(3):5-10. doi: 10.3969/j.issn.1673-1972.2017.03.001

    SI Huayan, MAO Chenjing, XIE Yameng, et al. Preparation of monodisperse superfine silver powder[J]. Journal of Shijiazhuan University,2017,19(3):5-10(in Chinese). doi: 10.3969/j.issn.1673-1972.2017.03.001
    [21] ZHANG T, SONG Y J, ZHANG X Y, et al. Synthesis of silver nanostructures by multistep method[J]. Sensors,2014,14(4):5860-5889. doi: 10.3390/s140405860
    [22] LI K, MA C Y, JIAN T C, et al. Making good use of the byproducts of cultivation: green synthesis and antibacterial effects of silver nanoparticles using the leaf extract of blueberry. Journal of Food Science and Technology-MYSORE. 2017, 54(11): 3569-3576.
    [23] CHEN C Z, COOPER S L. Interactions between dendrimer biocides and bacterial membranes[J]. Biomaterials,2002,23(16):3359-3368. doi: 10.1016/S0142-9612(02)00036-4
    [24] 吴姗姗. 不同Zeta电位的水合TGD吸附Pb(Ⅱ)和Cd(Ⅱ)的行为和机理研究[D]. 广州: 华南理工大学, 2019.

    WU Shanshan. Behavior and mechanism of Pb(II) and Cd(II) adsorption by hydrous TGD with different Zeta potentials[D]. Guangzhou: South China University of Technology, 2019 (in Chinese).
    [25] SADEGHI B, GHOLAMHOSEINPOOR F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2015,134(1):310-315.
    [26] DARROUDI M, AHMAD M B, MASHREGHI M. Gelatinous silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity[J]. Journal of Optoelectronics and Advanced Materials,2014,16(1):182-187.
    [27] 殷海荣, 武丽华, 陈福. 机械力化学合成纳米晶体的研究[J]. 化工新型材料, 2005, 33(9):36-38. doi: 10.3969/j.issn.1006-3536.2005.09.010

    YIN Hairong, WU Lihua, CHEN Fu. Study on mechanochemistry synthesis for nano-crystalline[J]. New Chemical Materials,2005,33(9):36-38(in Chinese). doi: 10.3969/j.issn.1006-3536.2005.09.010
    [28] SOTIRIOU G A, PRATSINIS S E. Antibacterial activity of nanosilver ions and particles[J]. Environmental Science & Technology. 2010, 44(14): 5649-5654.
    [29] 张曼莹, 刘姿铔, 邬艳君. 生物纳米银稳定性及抗菌性能研究[J]. 现代化工, 2018, 38(10):109-113.

    ZHANG Manying, LIU Ziya, WU Yanjun. Study on stability and antibacterial property of biogenic silver nanoparticles[J]. Modern Chemical Industry,2018,38(10):109-113(in Chinese).
    [30] MOSTAFA M, RAMADAN H E, ElAMIR M A. Sorption and desorption studies of radioiodine onto silver chloride via batch equilibration with its aqueous media[J]. Journal of Environmental Radioactivity,2015,150(12):9-19.
    [31] GAHLAWAT G, SHIKHA S, CHADDHA BS, et al. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera [J]. Microbial Cell Factories, 2016, 15(1): 25.
    [32] FENG Q L, WU J, CHEN G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J] Journal of Biomedical Materials Research, 2000, 52(4): 662-668.
    [33] LI W R, XIR X B, SHI Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli[J]. Applied Microbiology and Biotechnology,2010,85(4):1115-1122. doi: 10.1007/s00253-009-2159-5
    [34] SHEN S X, ZHANG T H, YUAN Y, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureusmembrane[J]. Food Control,2015(47):196-202.
    [35] 徐光年, 金俊成. 一种绿色合成稳定单分散纳米银溶胶的新方法[J]. 化工新型材料, 2013, 41(10):39-41. doi: 10.3969/j.issn.1006-3536.2013.10.013

    XU Guangnian, JIN Juncheng. A new method for green synthesis of stable monodisperse nano-silver sol[J]. New Chemical Materials,2013,41(10):39-41(in Chinese). doi: 10.3969/j.issn.1006-3536.2013.10.013
    [36] 刘鹏威, 郭彤, 魏华. 纳米载铜蒙脱石体外对三种水产病原菌及两种肠道有益菌杀菌作用[J]. 上海海洋大学学报, 2009, 18(5):520-526.

    LIU Pengwei, GUO Tong, WEI Hua. Bacteriaidal effects of copper-bearing nano-montmorillonite on three aquatic pathogenic bacteria and two intestinal available bacteria in vitro[J]. Journal of Shanghai Ocean University,2009,18(5):520-526(in Chinese).
    [37] ROMBAUT N, SAVOIRE R, THOMASSET B, et al. Grape seed oil extraction: Interest of supercritical fluid extraction and gas-assisted mechanical extraction for enhancing polyphenol co-extraction in oil[J]. Comptes rendus chimie,2014,17(3):284-292. doi: 10.1016/j.crci.2013.11.014
    [38] XU H, WANG L, SU H Y, et al. Making good use of food wastes: green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity[J]. Food Biophysics. 2015, 10(1): 12-18.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1408
  • HTML全文浏览量:  323
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2021-02-05
  • 网络出版日期:  2021-02-10
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回