留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型含硅聚芳炔树脂基透波复合材料的制备与性能

袁航 孟庆杰 张昊 谢非 姜丽萍 侯树涛 齐会民

袁航, 孟庆杰, 张昊, 等. 新型含硅聚芳炔树脂基透波复合材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3629-3639. doi: 10.13801/j.cnki.fhclxb.20210210.009
引用本文: 袁航, 孟庆杰, 张昊, 等. 新型含硅聚芳炔树脂基透波复合材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3629-3639. doi: 10.13801/j.cnki.fhclxb.20210210.009
YUAN Hang, MENG Qingjie, ZHANG Hao, et al. Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3629-3639. doi: 10.13801/j.cnki.fhclxb.20210210.009
Citation: YUAN Hang, MENG Qingjie, ZHANG Hao, et al. Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3629-3639. doi: 10.13801/j.cnki.fhclxb.20210210.009

新型含硅聚芳炔树脂基透波复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210210.009
详细信息
    通讯作者:

    袁航,博士,工程师,研究方向为树脂基透波复合材料  E-mail:yuanh1120@163.com

  • 中图分类号: TB332

Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite

  • 摘要: 为满足工程领域对耐高温树脂基透波复合材料的需求,研究石英纤维(QF)增强新型含硅改性聚芳炔(PSA)树脂基复合材料(QF/PSA)的制备方法及其性能。首先对树脂的黏度进行分析,确定了树脂在不同温度和时间下的黏度变化预测模型,适宜的树脂传递模塑工艺(Resin Transfer Molding, RTM)注胶温度在70~100℃范围;对树脂固化过程中的放热量、红外光谱和流变特性进行分析,确定了树脂的固化温度和固化过程,在250℃可以实现树脂的固化。基于上述分析进行了复合材料的高质量制备,并进一步对复合材料的微观形貌、力学性能、热膨胀性能、介电性能和耐高温性能进行分析和试验验证。材料的玻璃化转变温度(Tg)大于500℃,5%热失重温度(T5%)高达625℃,石英灯试验表明耐高温能力可达520℃/1000 s;介电常数稳定在3.1~3.2,介电损耗稳定在0.003以下;力学性能满足功能材料的使用要求。上述研究表明,该新型含硅聚芳炔树脂基透波复合材料在航空航天领域具有重要的应用价值。

     

  • 图  1  含硅聚芳炔(PSA)树脂的分子结构

    Figure  1.  The molecular structure of the silicon-containing polyarylacetylene (PSA) resin

    图  2  不同温度下PSA树脂的黏度-时间曲线

    Figure  2.  Viscosity-time curves of the PSA resin at different temperature

    图  3  PSA树脂的$\rm ln\left( {{\rm \eta / {{\rm \eta _0}}}} \right)$-$t$曲线图

    Figure  3.  $\rm ln\left( {{\eta / {{\eta _0}}}} \right)$-$t$curves of the PSA resin

    图  4  PSA树脂的黏度模型曲线与测试数据的对比

    Figure  4.  Comparison of viscosity prediction curves and test values of PSA resin

    图  5  PSA树脂注胶黏度特性预测模型

    Figure  5.  Injection viscosity prediction model of PSA resin

    图  6  PSA树脂不同升温速率时的DSC曲线

    Figure  6.  DSC curves of PSA resin at different heating rate

    图  7  PSA树脂不同升温速率下的固化温度及拟合曲线

    Figure  7.  Curing temperature and the fitting curves of PSA resin at different heating rate

    图  8  PSA树脂的黏度-温度曲线

    Figure  8.  Curves of viscosity versus temperature of PSA resin

    图  9  不同固化阶段的PSA树脂的FTIR图谱

    Figure  9.  FTIR spectra of PSA resin at different cure stages

    图  10  不同固化阶段的PSA树脂的DSC曲线

    Figure  10.  DSC curves of PSA resin at different cure stages

    图  11  石英纤维 (QF)/PSA复合材料内部的光学显微镜和SEM图像

    Figure  11.  Optical microscope and SEM images of quartz fiber (QF)/PSA composite

    图  12  不同温度下QF/PSA复合材料的弯曲强度、弯曲模量和层间剪切强度

    Figure  12.  Flexural strength, flexural modulus, and interlaminate shear strength of the QF/PSA composite at different temperature

    图  13  QF/PSA复合材料面内和垂直于面内的热机械曲线

    Figure  13.  TMA curves of the QF/PSA composite parallel and perpendicular to layers

    图  14  QF/PSA复合材料的介电性能

    Figure  14.  Dielectric properties of the QF/PSA composite

    图  15  QF/PSA复合材料的动态热机械分析曲线

    Figure  15.  DMA curves of the QF/PSA composite

    图  16  PSA和PAA树脂浇注体在空气和氮气氛围中的热失重曲线(升温速率:5℃/min)

    Figure  16.  TGA traces of PSA and PAA casting bodies in air and nitrogen (heating rate: 5℃/min)

    图  17  QF/PSA复合材料试验件高温试验前后的照片

    Figure  17.  Images of the QF/PSA composite before and after high temperature test

    图  18  QF/PSA复合材料高温试验之后超声和CT图像

    Figure  18.  Ultrasonic detecting and CT images of the QF/PSA composite after high temperature test

    表  1  PSA树脂不同温度下的模型参数$n$

    Table  1.   Fitting values of viscosity model parameter $n$ of PSA

    Temperature/℃Model parameter $n$
    80 0.0201
    90 0.0318
    100 0.0646
    110 0.0998
    下载: 导出CSV

    表  2  PSA树脂不同温度下的RTM注胶工艺窗口

    Table  2.   The PSA resin RTM injection processing window of different temperature

    Temperature/℃RTM injection time/h
    60 0
    70 0-17.8
    80 0-31.8
    90 0-29.5
    100 0.5-23.4
    110 3.9-17.5
    120 4.5-12.7
    130 4.1-9.1
    下载: 导出CSV

    表  3  QF/PSA复合材料与QF/聚芳炔(PAA)复合材料的室温力学性能

    Table  3.   Mechanical properties of the QF/PSA composite and QF/aromatic alkyne (PAA) composite at room temperature

    CompositeTensile strength/MPaTensile modulus/GPaCompressive strength/MPaCompressive modulus/GPaFlexural strength/MPaFlexural Modulus/GPaInterlaminate shear strength/MPa
    QF/PSA 388 23.4 152 28.4 252 25.5 17.7
    QF/PAA 161 16.0 92 14.4 172 16.5 14.5
    下载: 导出CSV
  • [1] 张雄, 王义, 程海峰, 等. 石英纤维透波复合材料的研究进展[J]. 材料导报, 2012, 26(S1):96-100.

    ZHANG Xiong, WANG Yi, CHENG Haifeng, et al. Research and development of wave-transparent composites reinforced by silica fibers[J]. Materials Review,2012,26(S1):96-100(in Chinese).
    [2] 裴晓园, 陈利, 李嘉禄, 等. 天线罩材料的研究进展[J]. 纺织学报, 2016, 37(12):153-159.

    PEI Xiaoyuan, CHEN Li, LI Jialu, et al. Research progress in radome material[J]. Journal of Textile Research,2016,37(12):153-159(in Chinese).
    [3] 孙周强, 顾嫒娟, 袁莉, 等. 耐高温有机透波复合材料用基体树脂的研究进展[J]. 材料导报, 2008, 22(11):43-50. doi: 10.3321/j.issn:1005-023X.2008.11.010

    SUN Zhouqiang, GU Aijuan, YUAN Li, et al. Research progress in resin matrices of heat-resistant wave-transparent organic composites[J]. Materials Review,2008,22(11):43-50(in Chinese). doi: 10.3321/j.issn:1005-023X.2008.11.010
    [4] HOU Z L, CAO M S, YUAN J, et al. High-temperature conductance loss dominated defect level in h-BN: Experiments and first principles calculations[J]. Journal of App-lied Physics,2009,105(7):076103. doi: 10.1063/1.3086388
    [5] CAO M S, HOU Z L, YUAN J, et al. Low dielectric loss and non-Debye relaxation of gamma-Y2Si2O7 ceramic at ele-vated temperature in X-band[J]. Journal of Applied Phy-sics,2009,105(10):106012.
    [6] 郭慧, 黄玉东, 刘丽, 等. 聚芳基乙炔树脂及其复合材料的研究现状[J]. 化学与黏合, 2008, 30(3):37-41.

    GUO Hui, HUANG Yudong, LIU Li, et al. Progress in research on polyarylacetylene and carbon fiber/poly-arylacetylene composites[J]. Chemistry and Adhesion,2008,30(3):37-41(in Chinese).
    [7] 吴晓青, 李嘉禄, 杨彩云, 等. 聚芳基乙炔在RTM工艺中的应用探索[J]. 航空制造技术, 2004, 47(7):65-67. doi: 10.3969/j.issn.1671-833X.2004.07.012

    WU Xiaoqing, LI Jialu, YANG Caiyun, et al. Preliminary app-lication of polyarylacetylene resin in RTM[J]. Aeronauti-cal Manufacturing Technology,2004,47(7):65-67(in Chinese). doi: 10.3969/j.issn.1671-833X.2004.07.012
    [8] 赵伟栋, 王磊, 潘玲英, 等. 聚酰亚胺复合材料研究进展[J]. 宇航材料工艺, 2013, 43(4):14-19. doi: 10.3969/j.issn.1007-2330.2013.04.004

    ZHAO Weidong, WANG Lei, PAN Lingying, et al. Recent advances in polyimides matrix structural composites[J]. Aerospace Materials & Technology,2013,43(4):14-19(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.04.004
    [9] 陈建升, 左红军, 范琳, 等. 耐高温聚酰亚胺材料研究进展[J]. 宇航材料工艺, 2006, 36(2):7-12. doi: 10.3969/j.issn.1007-2330.2006.02.002

    CHEN Jiansheng, ZUO Hongjun, FAN Lin, et al. Development of high temperature polyimide[J]. Aerospace Ma-terials & Technology,2006,36(2):7-12(in Chinese). doi: 10.3969/j.issn.1007-2330.2006.02.002
    [10] 孟祥胜, 李洪深, 杨慧丽, 等. 耐高温异构聚酰亚胺树脂及其复合材料[J]. 复合材料学报, 2011, 28(6):23-27.

    MENG Xiangsheng, LI Hongshen, YANG Huili, et al. High-temperature resistant isomeric polyimide resins and their composites[J]. Acta Materiae Compositae Sinica,2011,28(6):23-27(in Chinese).
    [11] 余瑞莲, 汪明, 李弘瑜, 等. RTM 成型聚酰亚胺复合材料研究[J]. 宇航材料工艺, 2008, 38(2):6-8. doi: 10.3969/j.issn.1007-2330.2008.02.002

    YU Ruilian, WANG Ming, LI Hongyu, et al. Polyimide composite fabricated by RTM[J]. Aerospace Materials & Technology,2008,38(2):6-8(in Chinese). doi: 10.3969/j.issn.1007-2330.2008.02.002
    [12] 魏建峰, 李宏涛, 孟祥胜, 等. 含苯炔基侧链的聚酰亚胺树脂及其复合材料[J]. 热固性树脂, 2011, 26(3):1-5.

    WEI Jianfeng, LI Hongtao, MENG Xiangsheng, et al. Polyimide resins containing phenylethynyl side chain and their composites[J]. Thermosetting Resin,2011,26(3):1-5(in Chinese).
    [13] 贾坤, 徐明珍, 潘海, 等. 耐高温腈基聚合物及复合材料研究进展[J]. 中国材料进展, 2015, 34(12):897-905.

    JIA Kun, XU Mingzhen, PAN Hai, et al. Research progress of high temperature resistant phthalonitrile-based polymers and composites[J]. Materials China,2015,34(12):897-905(in Chinese).
    [14] 钟正祥, 耿立艳, 祝晶晶, 等. 含炔基、氰基耐高温树脂的研究进展[J]. 化学与黏合, 2018, 50(5):357-361.

    ZHONG Zhengxiang, GENG Liyan, ZHU Jingjing, et al. Research progress in high temperature resin containing alkyne and nitrile[J]. Chemistry and Adhesion,2018,50(5):357-361(in Chinese).
    [15] 周恒, 刘锋, 李小丽, 等. 新型自催化氰基树脂的制备及其初步热性能[J]. 宇航材料工艺, 2010, 40(2):45-48. doi: 10.3969/j.issn.1007-2330.2010.02.012

    ZHOU Heng, LIU Feng, LI Xiaoli, et al. Preparation and thermal properties of novel self-catalyst resin with cyano group[J]. Aerospace Materials & Technology,2010,40(2):45-48(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.02.012
    [16] MASAYOSHI I, KOHJI I, KENJI I, et al. New highly heat-resistant polymers containing silicon: Poly (silyleneethynylenephenyleneethynylene)s[J]. Macromolecules,1997,30(4):694-701. doi: 10.1021/ma961081f
    [17] MASAYOSHI I, KENJI I, JUN-ICHI I, et al. Various silicon-containing polymers with Si(H)CC units[J]. Journal of Polymer Science Part A: Polymer Chemistry,2001,39(15):2658-2669. doi: 10.1002/pola.1242
    [18] TSENG W C, CHEN Y, CHANG G W. Curing conditions of polyarylacetylene prepolymers to obtain thermally resistant materials[J]. Polymer Degradation and Stability,2009,94(12):2149-2156. doi: 10.1016/j.polymdegradstab.2009.09.008
    [19] MING C W, MING Y, TONG Z, et al. Acetylene-grafted re-sins derived from phenolics via azo coupling reaction[J]. European Polymer Journal,2008,44(3):842-848. doi: 10.1016/j.eurpolymj.2008.01.002
    [20] SATYA B S, TEDDY M K, KENNETH M J, et al. Studies on cure chemistry of new acetylenic resins[J]. Macromole-cules,1993,26(23):6171-6174. doi: 10.1021/ma00075a005
    [21] XINTONG Y, SHIFENG D, YANCHUN H, et al. Thermosetting mechanism study of silicon-containing polyarylacetylene via in situ FTIR and solid-state NMR spectro-scopy[J]. Journal of Applied Polymer Science,2019,136(13):47301. doi: 10.1002/app.47301
    [22] GUTOWSKI T G. Advanced composites manufacturing[M]. New York: John Wiley & Sons Inc. 1997: 393-457.
    [23] 汪明, 余瑞莲, 李卫方, 等. 改性聚芳基乙炔树脂性能研究[J]. 宇航材料工艺, 2013, 43(4):43-48.

    WANG Ming, YU Ruilian, LI Weifang, et al. Study on performance of modified polyarylacetylene Resins[J]. Aerospace Materials & Technology,2013,43(4):43-48(in Chinese).
    [24] WANG Shaokai , LI Min, GU Yizhuo, et al. Experimental study on crack defects formation in polyarylacetylene composites and modification improvement of resin[J]. Journal of Composite Materials,2010,44(25):3017-3032. doi: 10.1177/0021998310371539
    [25] 雷景轩. 石英纤维增强石英陶瓷复合材料制备研究进展[J]. 陶瓷学报, 2019, 40(3):277-282.

    LEI Jingxuan. The research progress in preparation of silica fiber reinforced silica ceramic composites[J]. Journal of Ceramics,2019,40(3):277-282(in Chinese).
    [26] 邹铭, 肖凤艳, 郭香, 等. 石英纤维/含乙烯基聚硅氮烷耐高温透波复合材料的制备与性能[J]. 复合材料学报, 2019, 36(8):1813-1821.

    ZOU Ming, XIAO Fengyan, GUO Xiang, et al. Preparation and properties of quartz fiber cloth/vinyl-containing polysilazane high temperature wave-penetrating composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1813-1821(in Chinese).
    [27] HOU Z L, ZHANG L, YUAN J, et al. High-temperature dielectric response and multiscale mechanism of SiO2/Si3N4 nanocomposites[J]. Chinese Physics Letters,2008,25(6):2249-2252. doi: 10.1088/0256-307X/25/6/090
    [28] 张亮, 金海波, 曹茂盛. SiO2陶瓷复合材料高温介电性能研究[J]. 稀有金属材料与工程, 2007, 9(36):515-518.

    ZHANG L, JIN H B, CAO M S. Investigation on high-tem-perature dielectric properties of SiO2 composite materials[J]. Rare Metal Materials and Engineering,2007,9(36):515-518(in Chinese).
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  406
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 录用日期:  2021-01-25
  • 网络出版日期:  2021-02-14
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回