留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响

于洋 樊威 薛利利 高兴忠

于洋, 樊威, 薛利利, 等. 热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(12): 4060-4072. doi: 10.13801/j.cnki.fhclxb.20210311.004
引用本文: 于洋, 樊威, 薛利利, 等. 热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(12): 4060-4072. doi: 10.13801/j.cnki.fhclxb.20210311.004
YU Yang, FAN Wei, XUE Lili, et al. Influence of thermo-oxidative aging on the mechanical performance of three-dimensional braided carbon fiber-glass fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4060-4072. doi: 10.13801/j.cnki.fhclxb.20210311.004
Citation: YU Yang, FAN Wei, XUE Lili, et al. Influence of thermo-oxidative aging on the mechanical performance of three-dimensional braided carbon fiber-glass fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4060-4072. doi: 10.13801/j.cnki.fhclxb.20210311.004

热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210311.004
基金项目: 国家自然科学基金 (52073224;51703179);陕西省自然科学计划(2017JQ5056);陕西省创新能力支撑计划(2020PT-043);陕西省留学人员科技活动择优资助项目(12)
详细信息
    通讯作者:

    樊威,博士,教授,硕士生导师,研究方向为三维纺织复合材料结构与性能、智能纤维与智能可穿戴、废旧纺织品回收利用及安全与防护用纺织品的开发 E-mail:fanwei@xpu.edu.cn

  • 中图分类号: V258+.5

Influence of thermo-oxidative aging on the mechanical performance of three-dimensional braided carbon fiber-glass fiber/bismaleimide composites

  • 摘要: 研究了三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料和层合碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料在200℃和250℃分别老化10、30、90、120和180天后的弯曲和剪切性能的变化。结果显示热氧环境下,纤维/双马来酰亚胺树脂基体界面性能随着老化时间的延长而显著下降,且编织复合材料老化后的弯曲和剪切性能保留率大于层合复合材料。这是由于编织复合材料中沿厚度方向的Z向纱将所有纱线捆绑为一个整体结构抵抗外力,且在热氧老化造成复合材料之间产生裂纹时,Z向纱的存在可以阻挡裂纹的扩展,减缓材料的老化速率。这说明与层合复合材料相比,编织复合材料的整体结构能够起到补偿由热氧老化导致的力学性能下降的作用。

     

  • 图  1  编织织物 (a) 和层合织物 (b) 的结构示意图

    Figure  1.  Schematics of the braided fabric (a) and the laminated fabric (b)

    E-GF—E-glass fiber

    图  2  双切口剪切试样尺寸图 (a) 与测试夹具图 (b)

    Figure  2.  Size fabric picture (a) and test fixture picture (b) of the double-notch shear sample

    图  3  双马来酰亚胺树脂(BMI)在200℃ (a) 和250℃ (b) 下老化不同时间前后的FTIR图谱

    Figure  3.  FTIR spectra of the bismaleimide (BMI) at 200℃ (a) and 250℃ (b) for different aging time

    图  4  200℃和250℃下老化前后BMI试样表面C (a)、O (b) 相对含量及O/C (c) 的值

    Figure  4.  Change of C relative content (a), O relative content (b), and the value of O/C (c) of the BMI sample surface at 200℃ and 250℃ for different aging time

    图  5  三维编织CF-GF/BMI复合材料在250℃老化不同时间表面的显微照片和实时深度复合图像

    Figure  5.  Micrographs and real-time depth composite images on the surface of the braided CF-GF/BMI composite at 250℃ for different aging time

    图  6  CF-GF/BMI复合材料试样在250℃老化前后的侧面的显微照片

    Figure  6.  Photomicrographs of cross-section of the CF-GF/BMI composite sample before and after aging at 250℃((a), (b) Laminated composite; (c), (d) Braided composite; (e), (f) Zoom on cracks corresponding to (d))

    图  7  编织复合材料在250℃老化不同时间的SEM图像

    Figure  7.  SEM images taken from the braided composite at 250℃ for different aging time

    图  8  层合复合材料和编织复合材料老化后失重率与老化时间的关系

    Figure  8.  Relationship between weight loss rate and aging time of laminated composite and braided composites

    图  9  编织复合材料 (a) 和层合复合材料 (b) 在200℃和250℃老化不同时间前后的弯曲载荷-位移曲线

    Figure  9.  Bending load-displacement curves of the braided composites (a) and laminated composites (b) at 200℃ and 250℃ for different aging time

    图  10  CF-GF/BMI复合材料弯曲试样在250℃条件下老化前后的沿长度方向的破坏形貌

    Figure  10.  Fracture morphologies of the bending CF-GF/BMI composite samples along the length direction before and after aging at 250℃((a) Unaged laminated composite; (b) Aged laminated composite; (c) Unaged braided composite; (d) Aged braided composite)

    图  11  两种复合材料在200℃和250℃老化不同时间的弯曲强度 (a) 和弯曲强度保留率 (b)

    Figure  11.  Bending strength (a) and bending strength retention rate (b) of two composites aged at 200℃ and 250℃ for different times

    图  12  编织复合材料 (a) 和层合复合材料 (b) 在200℃和250℃老化不同时间后的剪切载荷-位移曲线

    Figure  12.  Shear load-displacement curves of the braided composite (a) and laminated composite (b) at 200℃ and 250℃ for different aging time

    图  13  编织复合材料 (a) 和层合复合材料 (c) 未老化试样的双切口剪切破坏后的断裂形貌 ((b)和(d)分别为(a)和(c)对应的放大图)

    Figure  13.  Fracture morphologies of braided composite (a) and laminated composite (c) after double-notch shear failure of unaged specimens ((b), (d) are enlarged images corresponding to (a) and (c), respectively)

    图  14  两种复合材料在200℃和250℃老化不同时间的剪切强度 (a) 和剪切强度保留率 (b)

    Figure  14.  Shear strength (a) and shear strength retention rate (b) of two composites aged at 200℃ and 250℃ for different time

    表  1  组成材料的性能参数

    Table  1.   Properties of constituent materials

    MaterialTypeTensile strength/MPaTensile modulus/GPaElongation at break/%Density/(g·cm−3)
    Carbon fiber T700 4 900 240 2.1 1.80
    Glass fiber E 3 430 73 4.8 2.54
    Bismaleimide BH301 92 4.5 2.4 1.25
    下载: 导出CSV

    表  2  三维编织碳纤维(CF)-玻璃纤维(GF)混杂织物和层合CF-GF混杂织物的织造工艺参数

    Table  2.   Technological parameters of the three-dimensional braided carbon fiber(CF)-glass fibers (GF) hybrid fabric and the laminated CF-GF hybrid fabric

    Reinforced
    structure
    Yarns liner density/texPreformed unit density/(yarn·cm−1)LayersFiber volume
    fraction/vol%
    0°/90°±45°Z-binder yarns0°/90°±45°Z-binder yarns
    Braided fabric 800 400×2 400 5 6 5 8 47.74±1.16
    Laminated fabric 800 400×2 6 6 8 46.23±1.42
    下载: 导出CSV

    表  3  老化BMI的红外特征峰位置对照

    Table  3.   Comparison of infrared characteristic peak position of aged BMI

    Wavenumber/cm−1Characteristic peakFunctional group
    2922 Asymmetric CH2 —CH2
    2851 Symmetric CH3 —CH3
    1710 Asymmetric imides —C=O—
    1602 Combined production of C=C and C=O —C=C–C=O
    1510 C—C of the benzene ring —C—C—
    1365 Aliphatic groups and imines CH, CH2, CH3
    1180 Generated by C=C C—N—C
    1098 Succinimide or ether —C—O—C—
    934 Maleimide deformation C=C
    下载: 导出CSV
  • [1] 王云英, 刘杰, 孟江燕, 等. 纤维增强聚合物基复合材料老化研究进展[J]. 材料工程, 2011(7):85-89.

    WANG Yunying, LIU Jie, MENG Jiangyan, et al. A review on aging behaviors of fiber reinforced polymer-matrix composites[J]. Journal of Materials Engineering,2011(7):85-89(in Chinese).
    [2] CHIN W S, LEE D G. Binary mixture rule for predicting the dielectric properties of unidirectional E-glass/epoxy composite[J]. Composite Structures,2006,74(2):153-162. doi: 10.1016/j.compstruct.2005.04.008
    [3] FAN W, YUAN L J, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing,2018,69:71-79. doi: 10.1016/j.polymertesting.2018.05.007
    [4] PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2019,232:1-11.
    [5] LIU X, WU Z J, YAN J. Experimental study of the electrical resistivity of glass-carbon-epoxy hybrid composite[J]. Polymers and Polymer Composites,2014,22(3):289-292. doi: 10.1177/096739111402200310
    [6] TSOTSIS T K, KELLER S, LEE K, et al. Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature[J]. Composites Science and Technology,2001,61:75-86. doi: 10.1016/S0266-3538(00)00196-2
    [7] GATES T, GRAYSON M. On the use of accelerated aging methods for screening high temperature polymeric composite materials[C]//40th Structures, Structural Dynamics, and Materials Conference and Exhibit, 1999, 925-935.
    [8] BURKS B, KUMOSA M. The effects of atmospheric aging on a hybrid polymer matrix composite[J]. Composites Science& Technology,2012,72(15):1803-1811.
    [9] BURKS B, MIDDLETON J, KUMOSA M. Micromechanics modeling of fatigue failure mechanisms in a hybrid polymer matrix composite[J]. Composites Science & Technology,2012,72(15):1863-1869.
    [10] VU D Q, GIGLIOTTI M, LAFARIE-FRENOT M C. The effect of thermo-oxidation on matrix cracking of cross-ply [0/90]S composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2013,44:114-121. doi: 10.1016/j.compositesa.2012.08.013
    [11] ZHAO Y, LIU W, SEAH L K, et al. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment[J]. Composites Part B: Engineering,2016,106:332-343. doi: 10.1016/j.compositesb.2016.09.045
    [12] FAN W, LI J L, WANG H, et al. Influence of thermo-oxidative aging on the impact property of conventional and graphene-based carbon fabric composites[J]. Journal of Reinforced Plastics and Composites,2015,34(2):116-130. doi: 10.1177/0731684414565225
    [13] 左翠平, 孙宝忠. 三维正交机织玄武岩/环氧树脂复合材料高温老化后低速冲击性质[J]. 复合材料学报, 2015, 33(3):545-550.

    ZUO Cuiping, SUN Baozhong. Low velocity impact behaviors of 3D orthogonal woven basalt/epoxy composites after high-temperature aging[J]. Acta Materiae Compositae Sinica,2015,33(3):545-550(in Chinese).
    [14] HOSOI A, KAWADA H. Fatigue life prediction for transverse crack initiation of CFRP cross-ply and quasi-isotropic laminates[J]. Materials,2018,11(7):1-16.
    [15] BULLEGAS G, BENOLIEL J, FENELLI P L, et al. Towards quasi isotropic laminates with engineered fracture behaviour for industrial applications[J]. Composites Science and Technology,2018,165:290-306. doi: 10.1016/j.compscitech.2018.07.004
    [16] 李嘉禄, 孙颖, 李学明. 二步法方型三维编织复合材料力学性能及影响因素[J]. 复合材料学报, 2004(1):90-94.

    LI Jialu, SUN Ying, LI Xueming. Research on the mechanical properties and the effectors of the two -step 3D braided composites[J]. Acta Materiae Compositae Sinica,2004(1):90-94(in Chinese).
    [17] 马少华, 费昺强, 许良, 等. 热氧老化对碳纤维双马树脂基复合材料性能的影响[J]. 材料工程, 2017, 45(12):50-57.

    MA Shaohua, FEI Bingqiang, XU Liang, et al. Influence of thethermal-oxidative aging on property of carbon fiber bismaleimide resin composites[J]. Journal of Materials Engineering,2017,45(12):50-57(in Chinese).
    [18] BULLIONS T A, MCGRATH J E, LOOS A C. Thermal-oxidative aging effects on the properties of a carbon fiber-reinforced phenylethynyl-terminated poly(etherimide)[J]. Composites Science and Technology,2003,63:1737-1748. doi: 10.1016/S0266-3538(03)00089-7
    [19] AKAY M, SPRATT G R, MEENAN B. The effects of long-term exposure to high temperatures on the ILSS and impact performance of carbon fibre reinforced bismaleimide[J]. Composites Science and Technology,2003,63(7):1053-1059. doi: 10.1016/S0266-3538(03)00018-6
    [20] SHINDO Y, WANG R, HORIGUCHI K, et al. Theoretical and experimental evaluation of double-notch shear strength of G-10CR glass-cloth/epoxy laminates at cryogenic tempera-tures[J]. Journal of Engineering Materials and Technology,1999,121:367-373. doi: 10.1115/1.2816002
    [21] XUE L L, FAN W, WU F, et al. The influence of thermo-oxidative aging on the electromagnetic absorbing properties of 3D quasi-isotropic braided carbon/glass bismaleimide composite[J]. Polymer Degradation and Stability,2019,168:1-8.
    [22] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    The China National Standardization Management Committee. Fibre-reinforced plastic composites-Dertermination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [23] American Society For Testing and Materials. Standard test method for in-plane shear strength of reinforced plastics: ASTM D3846[S]. West Conshohocken: American Society for Testing and Materials, 2015.
    [24] LI J Z, FAN W, MA Y L, et al. Influence of reinforcement structures and hybrid types on inter-laminar shear performance of carbon-glass hybrid fibers/bismaleimide composites under long-term thermo-oxidative aging[J]. Polymers,2019,11(8):1-11.
    [25] WANG S Q, DONG S L, GAO Y, et al. Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite[J]. Materials & Design,2017,115:213-223.
    [26] CYSNE B A P, FULCO A P P, GUERRA E S S, et al. Accelerated aging effects on carbon fiber/epoxy composites[J]. Composites Part B: Engineering,2017,110:298-306. doi: 10.1016/j.compositesb.2016.11.004
    [27] YANG B F, YUE Z F, GENG X L, et al. Temperature effects on transverse failure modes of carbon fiber/bismaleimides composites[J]. Journal of Composite Materials,2016,51(2):261-272.
    [28] FAN W, LI J L, ZHENG Y Y, et al. The effect of reinforced structure on thermo-oxidative stability of polymer-matrix composites[J]. Journal of Industrial Textiles,2015,46(1):237-255.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  938
  • HTML全文浏览量:  605
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 录用日期:  2021-02-25
  • 网络出版日期:  2021-03-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回