留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空耦换能器的碳纤维增强环氧树脂编织复合材料激光超声检测技术

刘旭 吴俊伟 何勇 袁懋诞 邓丽军 张永康 曾吕明 纪轩荣

刘旭, 吴俊伟, 何勇, 等. 基于空耦换能器的碳纤维增强环氧树脂编织复合材料激光超声检测技术[J]. 复合材料学报, 2021, 38(9): 2829-2838. doi: 10.13801/j.cnki.fhclxb.20201210.003
引用本文: 刘旭, 吴俊伟, 何勇, 等. 基于空耦换能器的碳纤维增强环氧树脂编织复合材料激光超声检测技术[J]. 复合材料学报, 2021, 38(9): 2829-2838. doi: 10.13801/j.cnki.fhclxb.20201210.003
LIU Xu, WU Junwei, HE Yong, et al. Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2829-2838. doi: 10.13801/j.cnki.fhclxb.20201210.003
Citation: LIU Xu, WU Junwei, HE Yong, et al. Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2829-2838. doi: 10.13801/j.cnki.fhclxb.20201210.003

基于空耦换能器的碳纤维增强环氧树脂编织复合材料激光超声检测技术

doi: 10.13801/j.cnki.fhclxb.20201210.003
基金项目: 广东省珠江人才计划(2016ZT06G375);国家重点研发计划(2018YFB1107703)
详细信息
    通讯作者:

    曾吕明,副研究员,硕士生导师,研究方向为激光超声成像  E-mail:zenglvming@163.com

    纪轩荣,教授,博士生导师,研究方向为超声无损检测  E-mail:xr.ji@gdut.edu.cn

  • 中图分类号: TB332;TG115.28

Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer

  • 摘要: 激光超声技术具有无需耦合剂、快速及高分辨等特点,适用于各向异性碳纤维增强树脂编织复合材料的缺陷检测。运用有限元法分析了激励位置和编织结构对激光点源激发超声波信号的影响,获得了弹性波在材料内部的传播规律以及能量分布特征,并采用1 MHz空气耦合换能器搭建了一套小型化、低成本的非接触激光超声C扫描成像系统,开展了斜纹和缎纹碳纤维增强树脂编织复合材料的近表微结构和内部缺陷检测实验。结果表明,基于空气耦合换能器的激光超声成像可以高精度地再现碳纤维增强树脂编织复合材料的近表树脂囊、碳纤维束形状、取向、尺寸及其内部缺陷等空间分布特征,有望为航空复合材料提供一种原位的微结构表征和缺陷检测方法。

     

  • 图  1  碳纤维增强树脂编织复合材料结构的几何形貌:(a) 横截面显微照片;(b) 几何模型

    Figure  1.  Geometrical morphology of carbon fiber reinforced polymer braided composites structure: (a) Micrograph of cross-section; (b) Geometric model

    图  2  基于空耦换能器的激光超声系统

    Figure  2.  Laser ultrasound system based on air-coupled transducer

    图  3  碳纤维增强树脂编织复合材料有限元仿真结果:(a)载荷施加位置示意图;(b)激励在纬向丝束处;(c)激励在弯曲丝束处;(d)激励在经向丝束处;(e)单向层压复合材料

    Figure  3.  Finite element simulation results of carbon fiber reinforced polymer braided composites: (a) Schematic diagram of load application position; (b) Excitation at the weft tow; (c) Excitation at the bending tow; (d) Excitation at the warp tow; (e) Unidirectional laminated composites

    图  4  碳纤维/环氧树脂编织复合材料垂直位移随时间的变化曲线

    Figure  4.  Variation curves of vertical displacement with time of carbon fiber reinforced resin braided composites

    图  5  碳纤维增强树脂编织复合材料微结构C扫描成像: (a)斜纹; (b)近表纹理; (c)沿(b)和(d)中虚线分布的信号强度; (d)表面光反射率测量

    Figure  5.  Micro structure C-scan imaging of carbon fiber reinforced polymer braided composites: (a) Plain weave; (b) Near surface veins; (c) Signal intensity distributed along the dotted line in (b) and (c); (d) Surface light reflectance measurement

    图  6  碳纤维增强树脂编织复合材料模拟缺陷C扫描成像: (a)模拟缺陷; (b)背部3 mm直径盲孔C扫描成像;(c)沿(b)中虚线分布的信号强度; (d)基于声程的C扫描成像

    Figure  6.  Simulated defect sample C-scan imaging (a) Simulated defects (b) Backside 3 mm diameter blind hole C-scan imaging (c) Signal intensity distributed along the dotted line in (b) (d) Sound path-based C-scan imaging

    图  7  缎纹碳纤维增强树脂编织复合材料分层样品C扫描成像: (a)复合材料;(b) 20 MHz相控阵C扫描成像;(c) 激光空气耦合超声C扫描成像;(d)表面纹理

    Figure  7.  Delamination sample C-scan imaging of satin braided carbon fiber reinforced polymer composites: (a) Satin braided carbon fiber composites; (b) 20 MHz phased array C-scan imaging; (c) Laser air-coupled ultrasound C-scan imaging; (d) Near surface veins

    表  1  碳纤维增强体与环氧树脂基体材料的机械和热学特性

    Table  1.   Mechanical and thermal properties of carbon fiber reinforcement and epoxy matrix

    MaterialCarbon fiberEpoxy
    ρ/(kg·m−3) 1550 1200
    E1/GPa 150 3.5
    E2=E3/GPa 10
    G12=G13/GPa 4.9
    G23/GPa 3.2
    ν12=ν13 0.33 0.35
    ν23 0.44
    C/(J·kg−1·K−1) 981 981
    λ1/(W·m−1K−1) 60 0.2
    λ2=λ3/(W·m−1K−1) 4
    α1/K−1 1×10−7 2×10−5
    α2=α3/K−1 2.5×10−7
    Notes: ρ is the density; E is the Young’s modulus; G is the shear modulus; ν is the Poisson's ratio; C is the specific heat capacity; λ is the coefficient of thermal conductivity; α is the coefficient of thermal expansion.
    下载: 导出CSV
  • [1] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803.

    MA B Q, ZHOU Z G. Progress and development trend of non-contact non-destructive testing technology for aerospace composite structures[J]. Acta Aeronauticale Sinica,2014,35(7):1787-1803(in Chinese).
    [2] 陈祥宝. 先进树脂基复合材料的发展和应用[J]. 航空材料学报, 2003, 023(z1):198-204.

    CHEN X B. Development and application of advanced polymer matrix composites[J]. Journal of Aeronautical Materials,2003,023(z1):198-204(in Chinese).
    [3] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 0239(3):605-610.

    CHEN S J. Composite material technology and large aircraft[J]. Journal of Aeronautical,2008,0239(3):605-610(in Chinese).
    [4] SUN G, ZHOU Z. Non-contact detection of delamination in layered anisotropic composite materials with ultrasonic waves generated and detected by lasers[J]. Optik International Journal for Light & Electron Optics,2016,127(16):6424-6433.
    [5] WANG L, WU J, CHEN C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures,2017,178:395-405.
    [6] KIER Z T, SALVI A, THEIS G, et al. Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties[J]. Composites,2015,68b:288-299.
    [7] 张爽, 吴晓青, 程勇. 二维编织理论研究进展[J]. 玻璃钢/复合材料, 2017(8): 53+103-110.

    ZHANG S, WU X Q, CHENG Y. Research progress of two-dimensional weaving theory[J]. Fiber Glass Reinforced Plastics/Composite, 2017(8): 53+103-110(in Chinese).
    [8] 章亚东, 段跃新, 左璐, 等. 经编织物法制备连续纤维增强热塑性复合材料的微观形貌和浸润过程分析[J]. 复合材料学报, 2004, 21(6):63-69. doi: 10.3321/j.issn:1000-3851.2004.06.011

    ZHANG Y D, DUAN Y X, ZUO L, et al. Analyses of microstructure and impregnation process of FRTP composites manufactured from warp-knitting fabric[J]. Acta Materiae Compositae Sinica,2004,21(6):63-69(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.06.011
    [9] 张超, 许希武, 郭树祥. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元分析[J]. 复合材料学报, 2011(6):221-228.

    ZHANG C, XU X W, GUO S X. Mesoscopic structural model and finite element analysis of mechanical properties of two-dimensional two-axis 1×1 braided composites[J]. Journal of Composites,2011(6):221-228(in Chinese).
    [10] 钟智丽, 王子帅. 二维碳纤维编织增强复合材料管件耐冲击性能研究[J]. 纺织科学与工程学报, 2019, 036(3):32-35.

    ZHONG Z L, WANG Z S. Research on impact resistance of two-dimensional braided carbon fiber reinforced composite pipe fittings[J]. Journal of Textile Science and Engineering,2019,036(3):32-35(in Chinese).
    [11] 刘松平,郭恩明,张谦琳. 复合材料深度方向超声C扫描检测技术[J]. 无损检测, 2001(1):13-15.

    LIU S P, GUO E M, ZHANG Q L, et al. Ultrasonic C-scan inspection technology of composite materials in depth direction[J]. Nondestructive Testing,2001(1):13-15(in Chinese).
    [12] 李圣贤, 朱永凯, 王海涛, 等. 复合材料分层缺陷的激光超声检测[J]. 无损检测, 2019, 41(5):1-5. doi: 10.11973/wsjc201905001

    LI S X, ZHU Y K, WANG H T, et al. Laser ultrasonic testing of delamination in composite material[J]. Nondestructive Testing,2019,41(5):1-5(in Chinese). doi: 10.11973/wsjc201905001
    [13] 王小永, 钱华. 先进复合材料中的主要缺陷与无损检测技术评价[J]. 无损探伤, 2006, 30(4):1-7.

    WANG X Y, QIAN H. Main defects in advanced composite materials and evaluation of nondestructive testing technology[J]. Nondestructive Testing,2006,30(4):1-7(in Chinese).
    [14] ANGELIDIS N, IRVING P E. Detection of impact damage in CFRP laminates by means of electrical potential techniques[J]. Composites Science and Technology,2007,67(3/4):594-604.
    [15] LIANG T, REN W, TIAN G Y, et al. Low energy impact damage detection in CFRP using eddy current pulsed thermography[J]. Composite Structures,2016,143:352-361.
    [16] LI C, PAIN D, WILCOX P D, et al. Imaging composite material using ultrasonic arrays[J]. NDT & E international,2013,53:8-17.
    [17] XU W, CAO M, LI X, et al. Delamination monitoring in CFRP laminated plates in noisy conditions using complex-wavelet 2D curvature mode shapes[J]. Smart Materials & Structures,2017,26(10):104008.
    [18] 吕宏诗, 刘彬. 激光多普勒测振技术的最新 进展[J]. 激光技术, 2005, 29(2):176-179. doi: 10.3969/j.issn.1001-3806.2005.02.002

    LU H S, LIU B. The latest development of laser Doppler vibration measurement technology[J]. Laser Technology,2005,29(2):176-179(in Chinese). doi: 10.3969/j.issn.1001-3806.2005.02.002
    [19] 季宏丽, 张超, 裘进浩. 激光超声技术在复合材料检测中的应用[J]. 航空制造技术, 2017(15):16-22.

    JI H L, ZHANG C, QIU J H. Application of laser ultrasonic technology in composite material testing[J]. Aviation Manufacturing Technology,2017(15):16-22(in Chinese).
    [20] 陈刚, 王开圣, 赵志敏. 基于有限元方法的双层材料激光超声数值模拟[J]. 理化检验(物理分册), 2011(7):9-12.

    CHEN G, WANG K S, ZHAO Z M. Numerical simulation of Laser ultrasound of two-layer material based on finite element method[J]. Physical and Chemical Inspection (Physical Volume),2011(7):9-12(in Chinese).
    [21] SHI Y J, WOOH S C, OWART M. Laser-ultrasonic generation of Lamb waves in the reaction force range[J]. Ultrasonics,2003,41(8):623-633.
    [22] BALAKHNINA I A, BRANDT N N, CHIKISHEV A Y, et al. Optoacoustic measurements of the porosity of paper samples with foxings[J]. Applied Physics Letters,2012,101(17):16.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  639
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-11-16
  • 录用日期:  2020-12-01
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回