留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高性能混凝土在环境温度变化下的力学性能试验研究

过震文 刘小方 段昕智 吕计委 王飞 阚黎黎

过震文, 刘小方, 段昕智, 等. 超高性能混凝土在环境温度变化下的力学性能试验研究[J]. 复合材料学报, 2021, 38(10): 3495-3503. doi: 10.13801/j.cnki.fhclxb.20201208.001
引用本文: 过震文, 刘小方, 段昕智, 等. 超高性能混凝土在环境温度变化下的力学性能试验研究[J]. 复合材料学报, 2021, 38(10): 3495-3503. doi: 10.13801/j.cnki.fhclxb.20201208.001
GUO Zhenwen, LIU Xiaofang, DUAN Xinzhi, et al. Experiment study on mechanical properties of ultra-high performance concrete under ambient temperature change[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3495-3503. doi: 10.13801/j.cnki.fhclxb.20201208.001
Citation: GUO Zhenwen, LIU Xiaofang, DUAN Xinzhi, et al. Experiment study on mechanical properties of ultra-high performance concrete under ambient temperature change[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3495-3503. doi: 10.13801/j.cnki.fhclxb.20201208.001

超高性能混凝土在环境温度变化下的力学性能试验研究

doi: 10.13801/j.cnki.fhclxb.20201208.001
基金项目: 桥隧工程系列超高性能混凝土技术研究(CTKY-ZDXM-2018-003)
详细信息
    通讯作者:

    阚黎黎,博士,副教授,研究方向为高性能土木工程材料  E-mail:kanlili@usst.edu.cn

  • 中图分类号: TU528

Experiment study on mechanical properties of ultra-high performance concrete under ambient temperature change

  • 摘要: 应用四点抗弯、轴压、轴拉实验,研究环境温度变化(−30℃、0℃、30℃、60℃、90℃)对超高性能混凝土(UHPC)力学性能的影响,通过数字图像技术(DIC)表征受弯过程中裂缝的发展,并结合SEM、压汞(MIP)对其微观结构进行分析。结果表明:经历不同环境温度变化后,UHPC弯拉、抗压、轴拉强度分别处于13.4~16.3 MPa、121.5~133 MPa、6.6~7.0 MPa范围,轴拉应变约为0.2%;与基准温度(30℃)相比,低温作用对其力学性能几乎无影响,随温度的升高性能有一定降低,但仍处于较高的水平;弯拉强度和轴拉强度在不同环境温度下都大致存在比例系数约为2.3的线性关系;30℃下基体更加致密,拥有最优的力学性能。

     

  • 图  1  UHPC试件的养护流程

    Figure  1.  Curing flow for the UHPC specimens

    图  2  弯拉性能试验装置和结构示意图

    Figure  2.  Bending performance test device and structure schematic diagram

    图  3  单轴拉伸试验装置及结构示意图

    Figure  3.  Uniaxial tensile test device and structure diagram

    图  4  UHPC经历不同环境温度变化后的抗压及弯拉强度

    Figure  4.  Compressive and flexural strength of UHPC after different ambient temperature changing

    图  5  UHPC在不同环境温度下的弯曲应力-位移曲线

    Figure  5.  Stress-deflection curves of UHPC at different ambient temperatures

    图  6  −30℃环境温度下UHPC受弯破坏过程

    Figure  6.  Bending failure process of UHPC at −30℃ ambient temperature

    图  7  UHPC在环境温度变化下的轴拉应力-应变曲线

    Figure  7.  Uniaxial tensile stress-strain curves of UHPC at different ambient temperatures

    图  8  UHPC在不同环境温度下的微观形貌

    Figure  8.  Micromorphologies of the UHPC specimens at different ambient temperatures

    图  9  不同环境温度作用下UHPC的孔体积分布曲线

    Figure  9.  Pore volume distribution curves of UHPC subjected to different ambient temperatures

    图  10  不同环境温度作用下UHPC的累积孔体积曲线

    Figure  10.  Cumulative pore volume curves of UHPC subjected to different ambient temperatures

    表  1  超高性能混凝土(UHPC)材料配合比

    Table  1.   Mix design proportion of ultra-high performance concrete (UHPC) wt%

    CementSilica fumeSandWaterSuperplasticizersSteel fiber
    35.47.142.57.80.27.0
    下载: 导出CSV

    表  2  UHPC在不同环境温度变化下的力学性能

    Table  2.   Mechanical properties of UHPC at different ambient temperatures

    Temperature/℃−300306090
    ff-test/MPa 15.9 15.9 16.3 15.1 13.8
    σt-test/MPa 6.8 6.9 7.0 6.7 6.6
    σt-theoretic/MPa 10.1 10.1 11.7 9.5 7.8
    ff-test/σt-test 2.3 2.3 2.3 2.3 2.1
    下载: 导出CSV

    表  3  不同环境温度作用下UHPC的孔结构参数

    Table  3.   Pore structure parameters of the UHPC subjected to different ambient temperatures

    Temperature/℃Porosity/%Total pore space/
    (mL·g−1)
    Total pore specific
    surface area/(m2·g−1)
    Most probable
    pore/nm
    Average probable
    pore/nm
    30℃ 3.1324 0.0135 3.234 6.0469 16.6
    90℃ 6.3647 0.0276 5.631 11.0392 19.6
    下载: 导出CSV
  • [1] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Influence of steel fiber on the flexural mechanical properties of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [2] 朋改非, 杨娟, 石云兴, 等. 超高性能混凝土抗高温爆裂性能试验研究[J]. 建筑材料学报, 2017, 20(2):229-233. doi: 10.3969/j.issn.1007-9629.2017.02.012

    PENG Gaifei, YANG Juan, SHI Yunxing, et al. Experimental study on high temperature burst resistance of ultra-high performance concrete[J]. Journal of Building Materials,2017,20(2):229-233(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.02.012
    [3] 杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.

    YANG Juan, PENG Gaifei. Effect of fiber on residual strength and explosives palling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2016,33(12):2931-2940(in Chinese).
    [4] 朋改非, 杨娟, 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017, 50(4):73-79.

    PENG Gaifei, YANG Juan, SHI Yunxing. Experimental study on residual mechanical properties of ultra-high performance concrete after high temperature[J]. China Civil Engineering Journal,2017,50(4):73-79(in Chinese).
    [5] HUANG H H, WANG R, GAO X J. Improvement effect of fiber alignment on resistance to elevated temperature of ultra-high performance concrete[J]. Composites Part B: Engineering,2019,177(15):107454.
    [6] HOU X M, ABID M, ZHENG W Z, et al. Evaluation of residual mechanical properties of steel fiber-reinforced reactive powder concrete after exposure to high temperature using nondestructive testing[J]. Proceia Engineering,2017,210:588-596. doi: 10.1016/j.proeng.2017.11.118
    [7] AHMAD S, HAKEEM I, AZAD A K. Effect of curing, fiber content and exposures on compressive strength and elasticity of UHPC[J]. Advance in Cement Research,2015,27(4):233-239. doi: 10.1680/adcr.13.00090
    [8] KIM M J, KIM S, LEE S K, et al. Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures[J]. Construction Building Materials,2017,157:498-508. doi: 10.1016/j.conbuildmat.2017.09.099
    [9] KIM S, KIM M J, YOO D Y, et al. Effect of cryogenic temperature on the flexural and cracking behaviors of ultra-high-performance fiber-reinforced concrete[J]. Cryogenics,2018,93:75-85. doi: 10.1016/j.cryogenics.2018.06.002
    [10] KIM M J, YOO D Y, KIM S, et al. Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete[J]. Cement and Concrete Research,2018,107:30-40. doi: 10.1016/j.cemconres.2018.02.003
    [11] KIM S, YOO D Y, KIM M J, et al. Self-healing capability of ultra-high-performance fiber-reinforced concrete after exposure to cryogenic temperature[J]. Cement and Concrete Composites,2019,104:103335. doi: 10.1016/j.cemconcomp.2019.103335
    [12] 牛旭婧, 乜颖, 朋改非, 等. 养护制度对超高性能混凝土抗高温爆裂性能的影响[J]. 硅酸盐学报, 2020, 48(8):1-11.

    NIU Xujing, NIE Ying, PENG Gaifei, et al. Effect of curing system on high temperature blowout resistance of ultra high performance concrete[J]. Journal of the Chinese Ceramic Society,2020,48(8):1-11(in Chinese).
    [13] 刘柯柯. 混杂纤维混凝土的环境温度作用、抗冻、氯盐渗透性试验研究[D]. 上海: 同济大学, 2019.

    LIU Keke. Experimental research on environmental temperature impact, frost resistance and chloride penetration of hybrid fiber reinforced concrete[D]. Shanghai: Tongji University, 2019(in Chinese).
    [14] 中国建筑科学研究院. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    China Academy of Building Research. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [15] LIU S F, SUN W, LIN W, et al. Preparation and durability of a high performance concrete with natural ultra-fine particles[J]. Journal of The Chinese Ceramic Society, 2003(11): 1080-1085.
    [16] 阎培渝, 覃肖, 杨文言. 大体积补偿收缩混凝土中钙矾石的分解与二次生成[J]. 硅酸盐学报, 2000, 28(4):21-26.

    YAN Peiyu, QIN Xiao, YANG Wenyan. Decomposition and secondary formation of ettringite in mass compensated shrinkage concrete[J]. Journal of the Chinese Ceramic Society,2000,28(4):21-26(in Chinese).
    [17] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11):1569-1581.

    QIAN Jueshi, YU Jincheng, SUN Huaqiang, et al. Formation and action of ettringite[J]. Journal of the Chinese Ceramic Society,2017,45(11):1569-1581(in Chinese).
    [18] CHEN H J, YU Y L, TANG C W. Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures[J]. Materials,2020,13(3):770. doi: 10.3390/ma13030770
    [19] 张哲. 钢—配筋UHPC组合桥面结构弯曲受拉性能研究[D]. 长沙: 湖南大学, 2016.

    ZHANG Zhe. Bending behaviors composite bridge deck system composed of OSD and reinforced UHPC layer[D]. Changsha: Hunan University, 2016(in Chinese).
    [20] PYO S, WILLE K, EL-TAWIL S, et al. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension[J]. Cement and Concrete Composites,2015,56:15-24. doi: 10.1016/j.cemconcomp.2014.10.002
    [21] 申鼎宇. 超高性能混凝土弯拉基本性能研究[D]. 长沙: 湖南大学, 2017.

    SHEN Dingyu. The basic research on the flexural properties of ultrahigh performance concrete[D]. Changsha: Hunan University, 2017(in Chinese).
    [22] GRAYBEAL B A, BABY F. Development of direct tension test method for ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2013, 110(2): 177-186.
    [23] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5):1295-1305.

    GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high performance concrete under uniaxial compression and tension[J]. Acta Materiae Compositae Sinica,2019,36(5):1295-1305(in Chinese).
    [24] GRAYBEAL B A. Material property characterization of ultra-high performance concrete[M]. McLean: Department ofTransportation, Federal Highway Administration, 2006.
    [25] 高绪明. 钢纤维对超高性能混凝土性能影响的研究[D]. 湖南: 湖南大学, 2013.

    GAO Xuming. Research on the performance of UHPC with steel fiber[D]. Changsha: Hunan University, 2013(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  501
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 录用日期:  2020-11-22
  • 网络出版日期:  2020-12-09
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回