留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C/SiC复合材料空气耦合超声检测数值模拟

史思琪 李飞龙 金士杰 林莉 罗忠兵

史思琪, 李飞龙, 金士杰, 等. C/SiC复合材料空气耦合超声检测数值模拟[J]. 复合材料学报, 2021, 38(11): 3737-3746. doi: 10.13801/j.cnki.fhclxb.20210115.003
引用本文: 史思琪, 李飞龙, 金士杰, 等. C/SiC复合材料空气耦合超声检测数值模拟[J]. 复合材料学报, 2021, 38(11): 3737-3746. doi: 10.13801/j.cnki.fhclxb.20210115.003
SHI Siqi, LI Feilong, JIN Shijie, et al. Simulation of air-coupled ultrasonic testing on C/SiC composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3737-3746. doi: 10.13801/j.cnki.fhclxb.20210115.003
Citation: SHI Siqi, LI Feilong, JIN Shijie, et al. Simulation of air-coupled ultrasonic testing on C/SiC composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3737-3746. doi: 10.13801/j.cnki.fhclxb.20210115.003

C/SiC复合材料空气耦合超声检测数值模拟

doi: 10.13801/j.cnki.fhclxb.20210115.003
基金项目: 大连市高层次人才创新支持计划(青年科技之星)(2018RQ40);辽宁省“兴辽英才计划”项目(XLYC1902082)
详细信息
    通讯作者:

    罗忠兵,博士,副教授,博士生导师,研究方向为材料无损检测与评价  E-mail:zhbluo@dlut.edu.cn

  • 中图分类号: TB332; TB55

Simulation of air-coupled ultrasonic testing on C/SiC composites

  • 摘要: 针对高孔隙率C/SiC复合材料空气耦合超声检测,引入考虑孔隙形貌的随机孔隙模型开展数值模拟研究。结合力学和声学性能测试计算材料弹性刚度矩阵,借助组织分析建立考虑孔隙微观形貌、孔隙率分别为5%、10%、15%的随机孔隙有限元模型,研究了空气耦合超声透射法检测过程中超声波传播特征及典型缺陷的响应规律。结果表明:材料纵波声速约2830 m/s,横观各向同性五个独立弹性常数分别为158.149、88.589、34.141、15.288和13.793 GPa。孔隙呈长条状,随孔隙率增加,超声衰减逐渐增大;孔隙尺寸与波长的比值约在0.05~0.22范围,主要为瑞利散射机制。高孔隙率、复杂孔隙形貌显著影响超声波的传播过程,导致个别条件下声场指向性发生偏转,影响缺陷检测。当分层缺陷长度由0增加到25 mm时,接收信号幅值衰减增大,与无分层模型相比最大衰减增加33.9 dB。随着复合材料层板厚度的增加,超声衰减进一步增强,声场也将产生一定偏转,主要体现孔隙和分层的共同作用。计算结果与实验吻合较好,为高孔隙率C/SiC复合材料的高质量无损检测提供支撑。

     

  • 图  1  C/SiC复合材料层板样品

    Figure  1.  Specimen of C/SiC composites

    图  2  C/SiC复合材料金相照片

    Figure  2.  Metallo graphies of C/SiC composites

    图  3  C/SiC复合材料声速测量((a)检测系统;(b)透射信号)

    Figure  3.  Velocity measurement of C/SiC composites ((a) Velocity measurement system; (b) Transmission signal)

    图  4  C/SiC复合材料板及坐标系

    Figure  4.  C/SiC composite plate and coordinated system

    图  5  空气耦合超声透射检测及C/SiC复合材料随机孔隙模型(RVM)示意图((a)有限元模型;被检材料放大显示:(b)孔隙率5%;(c)孔隙率15%)

    Figure  5.  Schematic diagram of air-coupled ultrasonic transmission and random void model (RVM) of C/SiC composite ((a) Finite element model; Magnified image of material: (b) Porosity 5% and (c) Porosity 15%)

    图  6  基体厚度5 mm、不同孔隙率条件下C/SiC复合材料的RVM声场((a) 孔隙率5%;(b) 孔隙率10%;(c) 孔隙率15%)

    Figure  6.  Ultrasonic field of C/SiC composite calculated based on RVM with different porosities in a 5 mm-thick laminate ((a) Porosity 5%; (b) Porosity 10%; (c) Porosity 15%)

    图  7  不同孔隙率下分层尺寸对C/SiC复合材料超声衰减的影响

    Figure  7.  Ultrasonic attenuation of C/SiC composite with different delamination diameters and different porosities

    图  8  基体厚度5 mm、孔隙率5%、不同直径分层下C/SiC复合材料的RVM声场((a) 分层15 mm;(b) 分层20 mm;(c) 分层25 mm)

    Figure  8.  Ultrasonic field of C/SiC composite calculated based on RVM with different delamination in a 5 mm-thick and 5% porosity laminate((a) Delamination 15 mm; (b) Delamination 20 mm; (c) Delamination 25 mm)

    图  9  5%孔隙率、不同层板厚度C/SiC复合材料的RVM声场((a)层板厚度5 mm;(b)层板厚度10 mm)

    Figure  9.  Ultrasonic field of C/SiC composite calculated based on RVM with different laminate thickness in a 5% porosity laminate((a) Laminate thickness 5 mm; (b) Laminate thickness 10 mm)

    图  10  5%孔隙率、不同层板厚度C/SiC复合材料的RVM透射信号

    Figure  10.  Transmission signals of C/SiC composite with 5% porosity and different thicknesses

    图  11  C/SiC复合材料超声衰减仿真及实验结果:(a)仿真结果;(b)实验结果

    Figure  11.  Simulation and experimental results of ultrasonic attenuation of C/SiC composites: (a) Simulation results; (b) Experimental results

  • [1] 益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009.

    YI Xiaosu, DU Shanyi, ZHANG Litong. Composite materials brochure[M]. Beijing: Chemical Industry Press, 2009(in Chinese).
    [2] MIKOCIAK D, RUDAWSKI A, BLAZEWICZ S. Mechanical and thermal properties of C/C composites modified with SiC nanofiller[J]. Materials Science and Engineering A,2018,716:220-227. doi: 10.1016/j.msea.2018.01.048
    [3] MEI H, TAN Y, CHANG P, et al. Simplified approach to study oxidative damage of C/SiC composites induced from notch defects[J]. Ceramics International,2019,45(17):22464-22470. doi: 10.1016/j.ceramint.2019.07.267
    [4] RAMESH KUMAR M, GHOSH A, KARUPPANNAN D, et al. Numerical and experimental studies of porosity on aerospace grade advanced composites[J]. Materials Today: Proceedings,2017,4(8):8697-8705. doi: 10.1016/j.matpr.2017.07.218
    [5] JIN S J, HE X C, CHEN J, et al. Recurrence quantitative analysis for porosity characterization of CFRP with complex void morphology[J]. Composite Structures,2019,229:111383. doi: 10.1016/j.compstruct.2019.111383
    [6] 张兆杭, 崔少康, 谭志勇, 等. C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真[J]. 复合材料学报, 2020, 37(8):1969-1980.

    ZHANG Zhaohang, CUI Shaokang, TAN Zhiyong, et al. Modeling of void defects in C/C-SiC satin weave compo-sites and simulation of their tensile properties[J]. Acta Materiae Compositae Sinica,2020,37(8):1969-1980(in Chinese).
    [7] MEI H, LI H, DENG X, et al. Nondestructive investigation of density defect in C/SiCs and its effect on the mechanical properties[J]. Materials Science and Engineering A,2012,553(36):45-50.
    [8] KAŽYS R, DEMČENKO A, ŽUKAUSKAS E, et al. Air-coupled ultrasonic investigation of multi-layered composite materials[J]. Ultrasonics,2006,44:e819-e822. doi: 10.1016/j.ultras.2006.05.112
    [9] 吴君豪, 何双起, 罗明, 等. 空气耦合超声探头声场及其对检测的影响[J]. 宇航材料工艺, 2018, 48(2):73-77. doi: 10.12044/j.issn.1007-2330.2018.02.015

    WU Junhao, HE Shuangqi, LUO Ming, et al. Acoustic field of air-coupled ultrasonic probe and its effect on detection[J]. Aerospace Materials & Technology,2018,48(2):73-77(in Chinese). doi: 10.12044/j.issn.1007-2330.2018.02.015
    [10] 吴君豪. C/SiC复合材料的空气耦合超声检测研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018.

    WU Junhao. Study on air-coupled ultrasonic testing for C/SiC composites[D]. Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2018(in Chinese).
    [11] 孔涛, 徐春广, 张运涛, 等. 空气耦合超声换能器声场计算与测量研究[J]. 机械工程学报, 2011, 47(22):19-24. doi: 10.3901/JME.2011.22.019

    KONG Tao, XU Chunguang, ZHANG Yuntao, et al. Investigation of Acoustic field calculation and measurement method for air-coupled ultrasonic transducer[J]. Journal of Mechanical Engineering,2011,47(22):19-24(in Chinese). doi: 10.3901/JME.2011.22.019
    [12] 程建楠. 纤维增强复合材料空气耦合超声成像检测方法与系统研究[D]. 太原: 中北大学, 2018.

    CHENG Jiannan. Study on the method and system of air coupled ultrasonic imaging for fiber reinforced composite[D]. Taiyuan: North University Of China, 2018(in Chinese).
    [13] 周海军, 董绍明, 高乐, 等. 复合工艺制备C/SiC复合材料的热物理性能[J]. 复合材料学报, 2013, 30(S1):86-89.

    ZHOU Haijun, DONG Shaoming, GAO Le, et al. The thermal-physical properties of C/SiC composites by compound technology[J]. Acta Materiae Compositae Sinica,2013,30(S1):86-89(in Chinese).
    [14] DEYDIER S, GENGEMBRE N, CALMON P, et al. Ultrasonic field computation into multilayered composite materials using a homogenization method based on ray theory[J]. AIP Conference Proceedings,2005,760(1):1057-1064.
    [15] CASTELLANO A, FOTI P, FRADDOSIO A, et al. Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches[J]. Composites Part B: Engineering,2014,66:299-310. doi: 10.1016/j.compositesb.2014.04.024
    [16] LIN L, CAO H, LUO Z. Total focusing method imaging of multidirectional CFRP laminate with model-based time delay correction[J]. NDT & E International,2018,97:51-58.
    [17] LIN L, CAO H, LUO Z. Dijkstra’s algorithm-based ray tracing method for total focusing method imaging of CFRP laminates[J]. Composite Structures,2019,215:298-304. doi: 10.1016/j.compstruct.2019.02.086
    [18] 罗忠兵, 张松, 钱恒奎, 等. CFRP复杂几何结构区相控阵超声检测建模与声传播规律[J]. 复合材料学报, 2021, 38(11):3686-3695.

    LUO Zhongbing, ZHANG Song, QIAN Hengkui, et al. Modelling and wave propagation behavior of phased array ultrasonic testing on carbon fiber reinforced plastics components with complex geometry[J]. Acta Materiae Compositae Sinica,2021,38(11):3686-3695(in Chinese).
    [19] LIN L, CHEN J, XIANG Z. A novel 2-D random void model and its application in ultrasonically determined void content for composite materials[J]. NDT & E International,2011,44(3):254-260.
    [20] DING S S, JIN S J, LUO Z B, et al. Researches on the ultrasonic scattering attenuation of carbon fibre reinforced plastics with 2D real morphology void model[J]. Acoustical Physics,2017,63(4):490-495. doi: 10.1134/S1063771017040029
    [21] LI B, LIAO J, CHEN Z, et al. High-performance Cf/SiC composites with a novel needle-punched carbon fiber fabric fabricated by PIP process[J]. Materials Research Express,2019,6(11):115622. doi: 10.1088/2053-1591/ab5070
    [22] STALIN M, RAJAGURU K, RANGARAJ L. Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis[J]. Journal of the European Ceramic Society,2020,40(2):290-297. doi: 10.1016/j.jeurceramsoc.2019.09.047
    [23] 朱颖. 纤维增韧陶瓷基复合材料超声检测关键问题研究[D]. 南昌: 南昌航空大学, 2014.

    ZHU Ying. Investigation on key problems of ultrasonic detection for fiber-reinforced ceramic matrix composites[D]. Nanchang: Nanchang Hangkong University, 2014(in Chinese).
    [24] 苏慧敏, 罗忠兵, 曹欢庆, 等. 提高碳纤维增强树脂基复合材料弹性常数超声表征精度的方法[J]. 复合材料学报, 2016, 33(11):2510-2516.

    SUN Huimin, LUO Zhongbing, CAO Huanqing, et al. Improve methods for elastic constants ultrasonic characterization accuracy of carbon fiber reinforced plastic[J]. Acta Materiae Compositae Sinica,2016,33(11):2510-2516(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  486
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 录用日期:  2021-01-02
  • 网络出版日期:  2021-01-15
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回