留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料机翼结构热校形工艺实验及数值模拟

王海雷 刘凯 张博明 叶金蕊

王海雷, 刘凯, 张博明, 等. 复合材料机翼结构热校形工艺实验及数值模拟[J]. 复合材料学报, 2021, 38(5): 1487-1496. doi: 10.13801/j.cnki.fhclxb.20210202.004
引用本文: 王海雷, 刘凯, 张博明, 等. 复合材料机翼结构热校形工艺实验及数值模拟[J]. 复合材料学报, 2021, 38(5): 1487-1496. doi: 10.13801/j.cnki.fhclxb.20210202.004
WANG Hailei, LIU Kai, ZHANG Boming, et al. Simulation and experimental studies of hot sizing process for composite wing structures[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1487-1496. doi: 10.13801/j.cnki.fhclxb.20210202.004
Citation: WANG Hailei, LIU Kai, ZHANG Boming, et al. Simulation and experimental studies of hot sizing process for composite wing structures[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1487-1496. doi: 10.13801/j.cnki.fhclxb.20210202.004

复合材料机翼结构热校形工艺实验及数值模拟

doi: 10.13801/j.cnki.fhclxb.20210202.004
基金项目: 国家自然科学基金青年基金(11902030)
详细信息
    通讯作者:

    刘凯,博士,研究方向为复合材料工艺力学 E-mail:liukai96200@yeah.net

  • 中图分类号: TB332

Simulation and experimental studies of hot sizing process for composite wing structures

  • 摘要: 纤维增强树脂基复合材料机翼结构复杂,往往存在明显的固化变形现象,严重影响机翼的装配和气动特性。本研究目的在于建立大型复合材料复杂结构的热校形工艺方法,解决复合材料机翼制造的变形控制问题。针对复合材料机翼的固化变形特点,设计了新的热校形夹具工装。在评价复合材料应力松弛特性的基础上,建立了大型复合材料机翼结构热校形工艺的有限元模拟方法,实现了对热校形后机翼结构残余变形的有效预报,分析了校形载荷、校形温度等关键工艺参数对校形效果的影响规律,形成优化的热校形工艺方案。模拟及实验结果表明,复合材料热校形工艺可以适用于大型复杂结构,复合材料机翼89.5%的固化变形被热校形工艺的残余变形抵消,达到机翼的装配和气动外形要求。

     

  • 图  1  T300碳纤维/环氧树脂复合材料应力松弛过程中松弛模量的变化

    Figure  1.  Evolution of relaxation modulus of T300 carbon fiber/epoxy composites during stress relation

    图  2  T300碳纤维/环氧树脂复合材料机翼外形及尺寸(a)、机翼根部截面尺寸及形状(b)、机翼端部尺寸及形状(c)、机翼有限元模型及不同铺层区域分布(d)

    Figure  2.  Skeleton of wing (a), cross section of wing at end (b), cross section of wing at base (c), mesh of wing and three regions according to lay-ups (d) of T300 carbon fiber/epoxy composite

    图  3  树脂传递模塑(RTM)成型后复合材料机翼固化变形情况

    Figure  3.  Experimental process induced distortions of wings after resin transfer molding (RTM) process

    αPID—Torsion angle; ΔH—Height difference between front and rear edges

    图  4  热校形夹具工装(a)、夹头1示意图(b)、夹头2~5示意图(c)

    Figure  4.  Hot sizing tools (a), clamp 1 (b), clamp 2–5 (c)

    图  5  校形载荷下T300碳纤维/环氧树脂复合材料机翼结构的位移及应力分布

    Figure  5.  Displacement and stress distribution of wing of T300 carbon fiber/epoxy composites under sizing load

    U2—Displacement; S11—Stresse in 1st direction; S22—Stresse in 2nd direction; S12—In-plane shear stress

    图  6  应力松弛后T300碳纤维/环氧树脂复合材料机翼结构的应力分布

    Figure  6.  Stress distribution of wing of T300 carbon fiber/epoxy composites after stress relaxation

    图  7  热校形后T300碳纤维/环氧树脂复合材料机翼结构的残余变形及应力分布

    Figure  7.  Final displacement and stress distribution of wing of T300 carbon fiber/epoxy composites after hot sizing

    图  8  不同校形载荷Ls (a)、不同夹头位置(b)、不同夹头数目(c)、不同校形温度Ts (d)下机翼结构热校形工艺模拟结果

    Figure  8.  Simulation results with different sizing loads Ls (a), different clamp locations (b), different amounts of clamps (c) and different hot sizing temperatures Ts (d)

    Δα—Change of torsion angle

    图  9  热校形前后T300碳纤维/环氧树脂复合材料机翼扭转角度(a)、对扭转角变化Δα和最终位移ΔU的模拟与实验结果进行对比(b)

    Figure  9.  Experimental torsion angles before and after hot sizing (a), comparison between simulation and experimental results on change of torsion angles Δα and final displacement ΔU (b) of wing of T300 carbon fiber/epoxy composites

    表  1  T300碳纤维/环氧树脂复合材料力学参数

    Table  1.   Mechanical parameters of T300 carbon fiber/epoxy composite

    ParameterE11/GPaE22/GPaμ12G12/GPaG13/GPaG23/GPa
    Value1369.040.343.873.873.22
    Notes: E11, E22—Modulus in 1st direction and 2nd direction, respectively; μ12—Poisson’s ratio in 12 direction; G12, G13, G23—Shear modulus in 12 direction, 13 direction and 23 direction, respectively.
    下载: 导出CSV

    表  2  机翼结构不同区域铺层情况

    Table  2.   Stacking sequences of plies in wing

    RegionSkin area 1Skin area 2Beam
    Stiffened [(45/02/−45)2/(45/03/−45/03)2] [(45/−45/03/45/−45/0)2/(45/02/−45/03/45/02/
    −45/0)S/(45/0/0/−45)2/(45/03/−45/03)2]
    [(45/02/−45/03/45/02/−45/90)S/45/
    −45/03/45/−45/0]2
    Transition [45/02/−45/(45/03/−45/03)2] [45/−45/03/45/−45/0/(45/02/−45/03/45/02/
    −45/90)S/45/02/−45/(45/03/−45/03)2]
    [45/02/−45/03/45/02/−45/90]SS
    Thin-walled [45/03/−45/03]2 [(45/02/−45/0/3/45/02/−45/90)S/(45/03/−45/03)2] [(45/02/−45/03/45/02/−45/90)S/45/
    −45/03/45/−45/0]
    下载: 导出CSV

    表  3  校形载荷Ls和校形温度Ts对热校形工艺回弹率S的影响

    Table  3.   Effect of hot sizing temperature Ts and sizing loads Ls on spring back rate S

    Ls/(°)Ts/°CΔα/(°)S/%
    −2.8 80 −0.19 93.0
    −5.6 80 −0.38 93.1
    −8.4 80 −0.56 93.3
    −11.2 80 −0.71 93.6
    −5.6 80 −0.38 93.2
    −5.6 90 −0.63 88.7
    −5.6 100 −0.86 84.6
    下载: 导出CSV
  • [1] 岳广全. 整体化复合材料壁板结构固化变形模拟及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    YUE Guangquan. Study on simulation and control method of cure-induced deformation for integrated composite panel[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [2] 李君, 姚学锋, 刘应华, 等. 复合材料T 型整体化结构固化翘曲变形模拟[J]. 复合材料学报, 2009, 26(1):156-161. doi: 10.3321/j.issn:1000-3851.2009.01.027

    LI Jun, YAO Xuefeng, LIU Yinghua, et al. Simulation on curing warpage deformation of composite T-shaped integrated structure[J]. Acta Materiae Compositae Sinica,2009,26(1):156-161(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.027
    [3] 江天, 徐吉峰, 刘卫平, 等. 整体化复合材料结构分阶段固化变形预报方法及其实验验证[J]. 复合材料学报, 2013, 30(5):61-66. doi: 10.3969/j.issn.1000-3851.2013.05.010

    JIANG Tian, XU Jifeng, LIU Weiping, et al. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Materiae Compositae Sinica,2013,30(5):61-66(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.010
    [4] WU B, LAN F, PARDOEN T, et al. Tooling geometry optimization for compensation of cure-induced distortions of a curved carbon/epoxy C-spar[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 27-35.
    [5] LIU K, YE J, TANG Z, et al. Simulation and verification of machining deformation for composite materials[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2014, 29(5): 917-922.
    [6] DING A, LI S, WANG J, et al. A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates[J]. Composite Structure,2015,129:60-69.
    [7] ISMET B, KENAN C, NURI E, et al. A review on the mechanical modeling of composite manufacturing processes[J]. Archives of Computational Methods in Engineering,2016,24(2):1-31.
    [8] BRAUNER C, BAUER S, HERRMANN A S. Analysing process-induced deformation and stresses using a simulated manufacturing process for composite multispar flaps[J]. Journal of Composite Materials,2015,49(4):387-402. doi: 10.1177/0021998313519281
    [9] 张纪奎, 郦正能, 关志东, 等. 热固性复合材料固化过程三维有限元模拟和变形预测[J]. 复合材料学报, 2009, 26(1):174-178. doi: 10.3321/j.issn:1000-3851.2009.01.030

    ZHANG Jikui, LI Zhengneng, GUAN Zhidong, et al. Three-dimensional finite element simulation and prediction for process-induced deformation of thermoset composites[J]. Acta Materiae Compositae Sinica,2009,26(1):174-178(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.030
    [10] LI D, LI X, DAI J. Process modelling of curing process-induced internal stress and deformation of composite laminate structure with elastic and viscoelastic models[J]. Applied Composite Materials,2018,25(3):527-544. doi: 10.1007/s10443-017-9633-5
    [11] HO K C, LIN J, DEAN T A. Modelling of springback in creep forming thick aluminum sheets[J]. International Journal of Plasticity. 2004, 20(4-5): 733-751.
    [12] SHONG Z C, LING Z R, PEKLENIK J. A study of the hot sizing and high temperature mechanical behaviour for titanium alloy sheet[J]. CIRP Annals, 1983, 32(1): 161-165.
    [13] 陈春奎, 黄永坚, 王以璠, 等. 钛和钛合金钣金零件的热校形[J]. 材料科学与工艺, 1985, 21(2):93-104.

    CHEN Chunkui, HUANG Yongjian, PAN Yifan, et al. Hot sizing on Ti alloy and Ti parts[J]. Material Science and Engineering,1985,21(2):93-104(in Chinese).
    [14] ZHAN L, LIN J, DEAN T A. A review of the development of creep age forming: Experimentation, modeling and applications[J]. International Journal of Machine Tools & Manufacture, 2011, 51(1): 1-17.
    [15] LIN J, HO K C, DEAN T A. An integrated process for modeling of precipitation hardening and spring back in creep age forming[J]. International Journal of Machine Tools & Manufacture, 2006, 46(11): 1266 -1270.
    [16] HO K C, LIN J, DEAN T A. Constitutive modelling of primary creep for age forming an aluminium alloy[J]. Journal of Materials Processing Technology, 2004, 153-154: 122 -127.
    [17] AARON C L, SHI Z, YANG H, et al. Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies[J]. Journal of Materials Processing Technology, 2015, 219: 155-163.
    [18] LEI C, YANG H, LI H, et al. Dependence of creep age formability on initial temper of an Al-Zn-Mg-Cu alloy[J]. Chinese Journal of Aeronautics,2016,29(5):1445-1454. doi: 10.1016/j.cja.2016.04.022
    [19] LIU K, YE J, ZHANG B, et al. Experimental and finite element studies on hot sizing process for L-shaped composite beams[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 161-169.
    [20] ASTM International. Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics: ASTM D2990—17[S]. West Conshohocken: ASTM International, 2017.
    [21] SUN C T, CHEN J L. A simple flow rule for characterizing nonlinear behavior of fiber composites[J]. Journal of Composite Materials, 1989, 23(10): 1009–1020.
    [22] LI H, ZHANG B. A new viscoelastic model based on generalized method of cells for fiber-reinforced composites[J]. International Journal of Plasticity, 2015, 65: 22-32.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  926
  • HTML全文浏览量:  287
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2021-01-20
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回