留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分子基功能复合材料的熔融沉积成型研究进展

冯东 王博 刘琦 陈朔 陈刚 胡天丁

冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5): 1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002
引用本文: 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5): 1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002
FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002
Citation: FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002

高分子基功能复合材料的熔融沉积成型研究进展

doi: 10.13801/j.cnki.fhclxb.20201216.002
基金项目: 国家自然科学基金(21666011)
详细信息
    通讯作者:

    陈刚,讲师,研究方向为增材制造 E-mail:gangchen@mail.xhu.edu.cn

    胡天丁,讲师,研究方向为增材制造 E-mail:teddyhu1991@163.com

  • 中图分类号: TB34;TH164

Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology

  • 摘要: 3D打印又称增材制造技术,是基于材料、机械控制、计算机软件等多学科交叉的先进制造技术,可得到传统加工不能制备的形状复杂制件。熔融沉积成型(FDM)是目前最通用的3D打印技术之一,具有设备简单、成本低、操作便捷等特点,广泛应用于航空航天、医疗、汽车工业等领域。本文介绍了国内外3D打印技术的整体布局、发展和规划,总结了常见3D打印技术的特点和分类。系统地介绍了FDM加工技术的原理和优势,阐明了 FDM加工对高分子材料的基本要求,介绍了碳基高分子复合材料在FDM加工中的应用。此外,详细综述了国内外基于FDM打印技术制造功能化高分子复合材料及器件的最新研究进展,其中包括FDM打印制造导电高分子复合材料、导热高分子复合材料及生物医用高分子复合材料等,以期为FDM制造高性能多功能高分子复合材料的研究及应用提供借鉴。并对FDM加工面临的挑战及需要解决的关键问题提出了思考并做出展望。

     

  • 图  1  夹心式应变传感器的图片及不同弯曲角度的电阻变化(a)及循环弯曲和释放过程中电阻的变化(b)[46]

    Figure  1.  Photographs of a sandwich strain sensor corresponding to resistance of different bending angles (a) and resistance change during cyclic wrist bending and releasing (b)[46]

    图  2  用于表征碳纳米管/热塑性聚氨酯(CNT/TPU)压阻传感器传感性能的单光束式传感器: (a)电阻测量的三点弯曲试验(标度棒=10 mm);(b) 1 mm偏转和恢复过程中力和电阻测量,速度为0.1 mm/s; (c)力-电阻变化曲线; (d)对反复弯曲周期的电阻响应(1 000次,最大挠度为0.5毫米,速度为1 mm/s); (e)对不同偏转速度的响应(最大挠度为0.5 mm,速度分别为0.1、0.2、0.5、1.0、2.0 mm/s)[47]

    Figure  2.  Single beam type sensor for characterization of sensing performance of carbon nanotube/thermoplastic polyurethane (CNT/TPU) based piezoresistive sensor: (a) Three-point bending test with resistance measurement (Scale bar=10 mm); (b) Force and resistance measurement during 1 mm deflection and recovery at a speed of 0.1 mm/s; (c) Curve of force vs. resistance change; (d) Response to repeated bending cycles (1000 times, maximum deflection of 0.5 mm and speed of 1 mm/s); (e) Response to different deflection speeds (Maximum deflection of 0.5 mm, and speed of 0.1, 0.2, 0.5, 1.0, 2.0 mm/s)[47]

    图  3  用于检测蒸气的熔融沉积成型(FDM)打印制件(a);在4个溶剂真空循环中使用单层多壁碳纳米管/聚偏氟乙烯(MWCNT/PVDF)(15∶85)狗骨传感器对不同有机溶剂蒸汽的传感数据(b);在4个溶剂真空循环中使用不同MWCNT质量分数的MWCNT/PVDF狗骨传感器对丙酮蒸汽的传感数据(c);在4个溶剂真空循环中使用不同打印层数的MWCNT/PVDF(15∶85)狗骨头传感器对丙酮蒸汽的传感数据(黑色-单层,蓝色-3层) (d)[48]

    Figure  3.  Fused deposition modeling (FDM) 3D printing parts used to sense vapour (a); Vapor sensing data over 4 solvent-vacuum cycles using a single printed layer (15∶85)-multi-walled carbon nanotube/poly(vinylidene fluoride) (MWCNT/PVDF) dogbone sensor for varying organic solvent vapors (b); Acetone sensing over 4 solvent-vacuum cycles as a function of MWCNT content in MWCNT/PVDF-printed dogbone sensors composed of a single layer (c); Acetone sensing over 4 solvent-vacuum cycles using a (15∶85)-MWCNT/PVDF dogbone sensor with printed thicknesses of 1 layer (black trace) and 3 layers (blue traces) (d)[48]

    R—Final resistance; R0—Initial resistance; EtOAc—Ethyl acetate

    图  4  制备具有共连续分离结构的导电填料/聚合物复合材料的示意图(a);在X波段频率范围内的CNT/TPU-CCS和CNT/TPU-CS的电磁屏蔽性能(b);CNT/TPU-CCS和已报导的碳纳米管/聚合物复合材料EMI SE比较(c);CNT/TPU-CCS在X波段上的SER和SEA (d);CNT/TPU-CCS电磁干扰屏蔽机制示意图(e)[52]

    Figure  4.  Schematic for preparation of conductive filler/polymer composite with co-continuous segregated structure (a); EMI SE for CNT/TPU-CCS and CNT/TPU-CS within X-band frequency range (b); Comparison of EMI SE for CNT/TPU-CCS and previously reported CNT/polymer composites (c); Variation of SER and SEA for CNT/TPU-CCS (d); Schematic representation of EMI shielding mechanism for CNT/TPU-CCS (e)[52]

    CCS—co-Continuous segregated structure; CS—Conventional segregated structure; EMI SE—Electromagnetic interference shielding efficiency; SER—Reflection shielding; SEA—Absorption shielding

    图  5  利用将固相力化学和熔融沉积成型结合的策略制备高导热复杂制件过程示意图(a);不同打印方向导致的不同石墨片取向的打印制件的导热机制图(b);石墨片含量与打印制件导热系数之间的关系(c);利用FDM加工的CPU散热器(d);散热器的导热红外热成像图(e)[57]

    Figure  5.  Schematic for preparation of high thermal conductive parts by combing solid state shear milling and fused deposition modeling strategy (a); Schematic illustration of thermal conductive performance of printed parts on different printing direction (b); Relationship between content of graphite sheets and thermal conductivity of printed parts (c); FDM printed CPU heat dissipation part; (e) Infrared thermal image of part (d)[57]

    RB—Large interfacial thermal resistance; VS—Vertical sample; FS—Flat sample; IP—In-plane; TP—Through-plane; Kc—Thermal conductive coefficient of nano composite; GNPs—Graphite nanoplates

    图  6  利用溶液混合制备不同羟基磷灰石含量的复合材料[63]

    Figure  6.  Composites with different hydroxyapatite contents by solution mixing[63]

    HA—Hydroxyapatite

    表  1  高分子常用3D打印技术优缺点[3]

    Table  1.   Categorized 3D printing techniques for polymers along with advantages and disadvantages[3]

    TechniqueTypical polymer
    material
    Resolution
    (Z-direction)
    AdvantageDisadvantage
    FDM ABS, PLA, PC, HIPS 100–150 μm Inexpensive machines and materials Rough surfaces, limited materials
    SLA Photocurable resin 10 μm High printing resolution Material limitation, cytotoxicity,
    high cost
    SLS PA12, PEEK 50–100 μm Good strength, easy removal of support powder High cost, powdery surface
    3DP Starch, PLA, ceramics 100 μm Fast, allows multimaterial AM, low temperature Limited strength of parts, clogging of binder jet
    Notes: FDM—Fused deposition modeling; SLA—Stero lithography apparatus; SLS—Selective laser sintering; 3DP—3D printing; ABS—Acrylonitrile butadiene Styrene copolymers; PLA—Polylactic acid; PC—Polycarbondined; HIPS—High impact polystyrene; PA12—Polyamide 12; PEEK—Polyether-ether-ketone; AM—Additive manufacturing.
    下载: 导出CSV
  • [1] 陈宁, 夏和生, 张杰, 等. 聚合物基微纳米功能复合材料3D打印加工的研究[J]. 高分子通报, 2017(10):41-51.

    CHEN Ning, XIA Hesheng, ZHANG Jie, et al. Studies on 3D printing of polymer-based micro/nano functional composites[J]. Chinese Polymer Bulletin,2017(10):41-51(in Chinese).
    [2] BELLINI A. Mechanical characterization of parts fabricated using fused deposition modeling[J]. Rapid Prototyping Journal,2003,9(4):252-264. doi: 10.1108/13552540310489631
    [3] LIGON S C, LISKA R, STAMPFL J R, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical reviews,2017,117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
    [4] HULL C W. Apparatus for production of three-dimensional objects by stereolithography: US, Patent 4575330[P]. 1986-3-11.
    [5] CHEN G, CHEN N, LI L, et al. Ionic liquid modified poly(vinyl alcohol) with improved thermal processability and excellent electrical conductivity[J]. Industrial & Engineering Chemistry Research,2018,57(15):5472-5481.
    [6] MONTERO M, ROUNDY S, ODELL D, et al. Material characterization of fused deposition modeling (FDM) ABS by designed experiments[C]//Proceedings of Rapid Prototyping and Manufacturing Conference. Society of Manufacturing Engineers, 2001.
    [7] RODRÍGUEZ J F, THOMAS J P, RENAUD J E. Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation[J]. Rapid Prototyping Journal,2001,7(3):148-158. doi: 10.1108/13552540110395547
    [8] SONG Y, LI Y, SONG W, et al. Measurements of the mechanical response of unidirectional 3D-printed PLA[J]. Materials & Design,2017,123:154-164.
    [9] SPOERK M, ARBEITER F, CAJNER H, et al. Parametric optimization of intra-and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid)[J]. Journal of Applied Polymer Science,2017,134(41):45401. doi: 10.1002/app.45401
    [10] ZHUANG Y, SONG W, NING G, et al. 3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites[J]. Materials & Design,2017,126:135-140.
    [11] LI H, ZHANG S, YI Z, et al. Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling[J]. Rapid Prototyping Journal,2017,23(6):973-982. doi: 10.1108/RPJ-03-2016-0033
    [12] PARK S A, LEE S H, KIM W D. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering[J]. Bioprocess and Biosystems Engineering,2011,34(4):505-513. doi: 10.1007/s00449-010-0499-2
    [13] BRUYAS A, LOU F, STAHL A M, et al. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity[J]. Journal of Materials Research,2018,33(14):1948-1959. doi: 10.1557/jmr.2018.112
    [14] SMITH W C, DEAN R W. Structural characteristics of fused deposition modeling polycarbonate material[J]. Polymer Testing,2013,32(8):1306-1312. doi: 10.1016/j.polymertesting.2013.07.014
    [15] CARNEIRO O, SILVA A, GOMES R. Fused deposition modeling with polypropylene[J]. Materials & Design,2015,83:768-776.
    [16] XIAO J, GAO Y. The manufacture of 3D printing of medical grade TPU[J]. Progress in Additive Manufacturing,2017,2(3):117-123. doi: 10.1007/s40964-017-0023-1
    [17] DENG X, ZENG Z, PENG B, et al. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling[J]. Materials,2018,11(2):216. doi: 10.3390/ma11020216
    [18] STOOF D, PICKERING K. Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene[J]. Composites Part B: Engineering,2018,135:110-118. doi: 10.1016/j.compositesb.2017.10.005
    [19] LOVE L J, KUNC V, RIOS O, et al. The importance of carbon fiber to polymer additive manufacturing[J]. Journal of Materials Research,2014,29(17):1893-1898. doi: 10.1557/jmr.2014.212
    [20] PEREZ A R T, ROBERSON D A, WICKER R B. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials[J]. Journal of Failure Analysis and Prevention,2014,14(3):343-353. doi: 10.1007/s11668-014-9803-9
    [21] NING F, CONG W, QIU J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B: Engineering,2015,80:369-378. doi: 10.1016/j.compositesb.2015.06.013
    [22] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [23] LIAO G, LI Z, CHENG Y, et al. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling[J]. Materials & Design,2018,139:283-292.
    [24] MAHAJAN C, CORMIER D. 3D printing of carbon fiber composites with preferentially aligned fibers[C]//Proceedings of the 2015 Industrial and Systems Engineering Research Conference. Nashville, 2015.
    [25] YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. doi: 10.1108/RPJ-08-2015-0098
    [26] LIU P, DINWIDDIE R B, KEUM J K, et al. Rheology, crystal structure, and nanomechanical properties in large-scale additive manufacturing of polyphenylene sulfide/carbon fiber composites[J]. Composites Science and Technology,2018,168:263-271. doi: 10.1016/j.compscitech.2018.09.010
    [27] BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing,2018,22:176-186. doi: 10.1016/j.addma.2018.04.039
    [28] HAO W, LIU Y, ZHOU H, et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites[J]. Polymer Testing,2018,65:29-34. doi: 10.1016/j.polymertesting.2017.11.004
    [29] TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology,2014,105:144-150. doi: 10.1016/j.compscitech.2014.10.009
    [30] BLOK L, WOODS B K S, YU H, et al. 3D printed composites-benchmarking the state-of-the-art[C]//21st International Conference on Composite Materials. Xi’an, 2017.
    [31] KALAITZIDOU K, FUKUSHIMA H, DRZAL L T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets[J]. Carbon,2007,45(7):1446-1452. doi: 10.1016/j.carbon.2007.03.029
    [32] MA P-C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003
    [33] DUL S, FAMBRI L, PEGORETTI A. Fused deposition modelling with ABS-graphene nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2016,85:181-191. doi: 10.1016/j.compositesa.2016.03.013
    [34] PRASHANTHA K, ROGER F. Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling[J]. Journal of Macromolecular Science Part A,2017,54(1):24-29. doi: 10.1080/10601325.2017.1250311
    [35] YU W W, ZHANG J, WU J R, et al. Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling[J]. Journal of Applied Polymer Science,2017,134(15):44703.
    [36] WENG Z, WANG J, SENTHIL T, et al. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing[J]. Materials & Design,2016,102:276-283.
    [37] CHEN S, LU J, FENG J. 3D-Printable ABS blends with improved scratch resistance and balanced mechanical performance[J]. Industrial & Engineering Chemistry Research,2018,57(11):3923-3931.
    [38] OUYANG Q, GUO B, XU J. Preparation and characterization of poly(butylene succinate)/polylactide blends for fused deposition modeling 3D printing[J]. ACS Omega,2018,3(10):14309-14317. doi: 10.1021/acsomega.8b02549
    [39] SONG P, ZHOU C, FAN H, et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology[J]. Composites Part B: Engineering,2018,152:151-159. doi: 10.1016/j.compositesb.2018.06.029
    [40] ZHOU C, YANG K, WANG K, et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds[J]. Materials & Design,2016,109:415-424.
    [41] NGUYEN N, PARK J G, ZHANG S, et al. Recent advances on 3D printing technique for thermal-related applications[J]. Advanced Engineering Materials,2018,20(5):1700876. doi: 10.1002/adem.201700876
    [42] RATHEESH G, VENUGOPAL J R, CHINAPPAN A, et al. 3D fabrication of polymeric scaffolds for regenerative therapy[J]. ACS Biomaterials Science & Engineering,2017,3(7):1175-1194.
    [43] GNANASEKARAN K, HEIJMANS T, VAN BENNEKOM S, et al. 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling[J]. Applied Materials Today,2017,9:21-28. doi: 10.1016/j.apmt.2017.04.003
    [44] CHRIST J F, ALIHEIDARI N, AMELI A. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design,2017,131:394-401.
    [45] XIANG D, ZHANG X Z, LI Y T, et al. Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions[J]. Composites Part B: Engineering,2019,176:107250. doi: 10.1016/j.compositesb.2019.107250
    [46] HUANG P, XIA Z, CUI S. 3D printing of carbon fiber-filled conductive silicon rubber[J]. Materials & Design,2018,142:11-21.
    [47] KIM K, PARK J, SUH J H, et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments[J]. Sensors and Actuators A: Physical,2017,263:493-500. doi: 10.1016/j.sna.2017.07.020
    [48] KENNEDY Z, CHRIST J, EVANS K, et al. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform[J]. Nanoscale,2017,9(17):5458-5466. doi: 10.1039/C7NR00617A
    [49] ECCO L, DUL S, SCHMITZ D, BARRA G, et al. Rapid prototyping of efficient electromagnetic interference shielding polymer composites via fused deposition modeling[J]. Applied Sciences,2019,9(1):37.
    [50] SCHMITZ D, ECCO L, DUL S, et al. Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling[J]. Materials Today Communications,2018,15:70-80. doi: 10.1016/j.mtcomm.2018.02.034
    [51] SWEENEY C B, LACKEY B A, POSPISIL M J, et al. Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating[J]. Science Advances,2017,3(6):1700262. doi: 10.1126/sciadv.1700262
    [52] YING T, YAN W, CHANG G, et al. An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance[J]. Journal of Materials Chemistry C,2020,8(32):11546-11554. doi: 10.1039/D0TC02265A
    [53] JIA Y, HE H, GENG Y, et al. High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing[J]. Composites Science and Technology,2017,145:55-61. doi: 10.1016/j.compscitech.2017.03.035
    [54] STEPASHKIN А, CHUKOV D, SENATOV F, et al. 3D-printed PEEK-carbon fiber (CF) composites: Structure and thermal properties[J]. Composites Science and Technology,2018,164:319-326. doi: 10.1016/j.compscitech.2018.05.032
    [55] DORIGATO A, MORETTI V, DUL S, et al. Electrically conductive nanocomposites for fused deposition modelling[J]. Synthetic Metals,2017,226:7-14. doi: 10.1016/j.synthmet.2017.01.009
    [56] HWANG S, REYES E I, MOON K S, et al. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process[J]. Journal of Electronic Materials,2014,44(3):771-777.
    [57] JING J, CHEN Y, SHI S, et al. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods[J]. Chemical Engineering Journal,2020,402:126218. doi: 10.1016/j.cej.2020.126218
    [58] NADGORNY M, AMELI A. Functional polymers and nanocomposites for 3D printing of smart structures and devices[J]. ACS applied materials & interfaces,2018,10(21):17489-17507.
    [59] CHEN Q, MANGADLAO J D, WALLAT J, et al. 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties[J]. ACS Applied Materials & Interfaces,2017,9(4):4015-4023.
    [60] CORCIONE C E, GERVASO F, SCALERA F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling[J]. Ceramics International,2018,45(2):2803-2810.
    [61] SHOR L, GÜCERI S, WEN X, et al. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro[J]. Biomaterials,2007,28(35):5291-5297. doi: 10.1016/j.biomaterials.2007.08.018
    [62] DRUMMER D, CIFUENTES-CUÉLLAR S, RIETZEL D. Suitability of PLA/TCP for fused deposition modeling[J]. Rapid Prototyping Journal,2012,18(6):500-507. doi: 10.1108/13552541211272045
    [63] YU J, XU Y, LI S, et al. Three-dimensional printing of nano hydroxyapatite/poly(ester urea) composite scaffolds with enhanced bioactivity[J]. Biomacromolecules,2017,18(12):4171-4183. doi: 10.1021/acs.biomac.7b01222
    [64] WU W, TIAN H, XIANG A. Influence of polyol plasticizers on the properties of polyvinyl alcohol films fabricated by melt processing[J]. Journal of Polymers and the Environment,2012,20(1):63-69. doi: 10.1007/s10924-011-0364-7
    [65] YANG L, CHEN Y, WANG M, et al. Fused deposition modeling 3D printing of novel poly(vinyl alcohol)/graphene nanocomposite with enhanced mechanical and electromagnetic interference shielding properties[J]. Industrial & Engineering Chemistry Research,2020,59(16):8066-8077.
    [66] CHEN G, CHEN N, WANG Q. Preparation of poly(vinyl alcohol)/ionic liquid composites with improved processability and electrical conductivity for fused deposition modeling[J]. Materials & design,2018,157:273-283.
    [67] LI M Y, JIANG J J, HU B, et al. Fused deposition modeling of hierarchical porous polyetherimide assisted by an in-situ CO2 foaming technology[J]. Composites Science and Technology,2020,200:108454. doi: 10.1016/j.compscitech.2020.108454
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1546
  • HTML全文浏览量:  626
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 录用日期:  2020-12-14
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回