留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹道防护用先进复合材料弹道响应的研究进展

何业茂 焦亚男 周庆 陈利

何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5): 1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004
引用本文: 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5): 1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004
Citation: HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004

弹道防护用先进复合材料弹道响应的研究进展

doi: 10.13801/j.cnki.fhclxb.20201201.004
详细信息
    通讯作者:

    焦亚男,博士,研究员,研究方向为三维新型立体织物整体近净成型工艺设计与理论 E-mail:Jiaoyn@tjpu.edu.cn

  • 中图分类号: TB332

Research progress on ballistic response of advanced composite for ballistic protection

  • 摘要: 本文对弹道防护用先进复合材料的弹道响应研究及其在工程领域的应用现状进行了综述。首先,基于工程应用研究的试验结果,对超高分子量聚乙烯(UHMWPE)纤维、对位芳香族聚酰胺(PPTA)纤维、芳Ⅲ纤维、聚对苯撑苯并双噁唑(PBO)纤维和聚酰亚胺(PI)纤维等高性能纤维的防弹性能及其复合材料在弹道防护工程领域的应用现状进行了概述,近年来先进复合材料的防弹性能随着纤维力学性能的突破而逐渐提高;其次,讨论了先进复合材料弹道响应的影响因素及其作用机制,发现先进复合材料的塑性拉伸变形是其抵挡弹丸侵彻的主要防弹机制;最后,对弹道防护用先进复合材料的研究方向进行了展望。

     

  • 图  1  弹道防护用高性能纤维的表面微观形貌

    Figure  1.  Surface micro-morphologies of bulletproof high-performance fiber

    图  2  弹道防护用超高分子量聚乙烯(UHMWPE)纤维的纵向拉伸力学性能与纤度关系

    Figure  2.  Relationship between longitudinal tensile mechanical properties and linear density of bulletproof ultra-high molecular weight polyethylene (UHMWPE) fiber

    图  3  UHMWPE纤维纵向拉伸强度与其复合材料抗弹道侵彻性能的关系

    Figure  3.  Relationship between longitudinal tensile strength of UHMWPE fiber and anti-penetration performance of its composite

    图  4  UHMWPE纤维复合材料有效抵挡9 mm×19 mm铅芯弹和7.62 mm×39 mm软钢芯弹侵彻的面密度随时间的演变

    Figure  4.  Time dependent evolution of area density of UHMWPE fiber composite for effectively resisting penetration of 9 mm×19 mm lead core bullet and 7.62 mm×39 mm mild-steel core bullet

    图  5  UHMWPE纤维复合材料与对位芳香族聚酰胺(PPTA)纤维复合材料防弹性能对比

    Figure  5.  Comparison of ballistic performance between UHMWPE fiber composite and poly para phenylene terepthalamide (PPTA) fiber composite

    图  6  在450℃下热处理10 h后高性能纤维的微观形貌[27]

    Figure  6.  Micromorphologies of high-performance fiber after heat treating for 10 h at 450℃[27]

    图  7  芳香族高性能复合材料防弹性能对比

    Figure  7.  Comparison of ballistic performance of aromatic high-performance fiber composites

    图  8  研究路线示意图

    Figure  8.  Schematic of research route

    图  9  厚为100 mm的UHMWPE纤维复合材料层压板抗12.7 mm模拟破片侵彻后的断口破坏形貌[40]

    Figure  9.  Fracture morphologies of post-impact UHMWPE fiber of 100 mm thick composite laminate against 12.7 mm fragment simulating projectile[40]

    图  10  UHMWPE纤维复合材料层压板被8.3 g钢珠以不同弹速侵彻后的截面X射线计算机断层扫面形貌[42]

    Figure  10.  X-ray images along diametrical section of UHMWPE-fiber composite laminate impacted by 8.3 g steel ball at different velocities[42]

    图  11  弹道侵彻作用下正交单向(UD)结构层压板的间接张力机制[45]

    Figure  11.  Indirect tension mechanism of orthogonal unidirection (UD) laminates subjected to ballistic penetration[45]

    图  12  UHMWPE纤维纵向力学性能与其复合材料防弹性能的关系[54]

    Figure  12.  Relationship between longitudinal mechanical properties of UHMWPE fiber and anti-penetration performance of its composites[54]

    图  13  先进复合材料的增强体结构[57]

    Figure  13.  Reinforcement structure of advanced composite[57]

    图  14  冲击波的传播方式[57]

    Figure  14.  Propagation mode of shock wave[57]

    FRP—Fiber reinforced polymer

    图  15  弹道钝性冲击诱导的压力冲击信号[82]

    Figure  15.  Pressure shock wave signals induced by ballistic blunt impact[82]

    图  16  弹道侵彻过程中层压板的背面变形随时间的变化[52]

    Figure  16.  Back-face deformation of laminate with respect to time during ballistic penetration[52]

    表  1  弹道防护用高性能纤维的物理性能及其Cunniff速度${{{{{c}}}^{{{*}}}}}$

    Table  1.   Physical properties and Cunniff velocity ${{{{{c}}}^{{{*}}}}}$ of bulletproof high-performance fiber

    Types of fiberVolume density/(g·cm−3)Tensile strength/(cN·dtex−1)Tensile modulus/(cN·dtex−1)Elongation/%${{{c}^{*}}} $/(m·s−1)
    UHMWPE 0.97 34–45 1000–1600 2.60–3.00 514–939
    PPTA 1.44 18–21 600–800 2.30–2.50 538–611
    PBO 1.56 30.04 961 2.56 715
    Aramid Ⅲ 1.43–1.45 25.93 881 2.46 662
    PI 1.43 25.74 865 2.59 670
    PIPD[12] 1.70 31.81 2100 1.4 679
    Notes: UHMWPE—Ultra-high molecular weight polyethylene; PPTA—Poly para phenylene terepthalamide; PBO—Poly-p-phenylene-2,6-benzobisoxazole; PI—Polyimide; PIPD—Poly[2,6-diimidazo(4,5-b:4′,5′-e)pyridinylene-1,4(2,5-dihydroxy) phenylen].
    下载: 导出CSV

    表  2  先进复合材料弹道响应的影响因素

    Table  2.   Influence factors of ballistic behavior of advanced composite

    Type of influence factorSpecification
    Component material properties and structure Fiber property; Matrix property; Interface property; Macro- and micro- structure; Material content; Thickness or areal-density; Hybrid
    Molding process parameter Consolidation pressure; Consolidation temperature; Consolidation time
    Ballistic test parameter Projectile core material; Projectile geometry; Impacting velocity; Shooting angle; Shooting state; Shooting distance
    Service environment Temperature; Preload
    下载: 导出CSV
  • [1] BHATNAGAR A. Lightweight fiber-reinforced composites for ballistic applications[M]//BEAUMONT P W R, ZWEBEN C H. Comprehensive composite materials Ⅱ. Elsevier Ltd., 2018: 527-544.
    [2] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures,2003,61(1-2):161-173. doi: 10.1016/S0263-8223(03)00029-1
    [3] CROUCH I G C. Body armour: New materials, new systems[J]. Defence Technology,2019,15(3):241-253. doi: 10.1016/j.dt.2019.02.002
    [4] AN X Y, TIAN C, SUN Q T, et al. Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures[J]. Defence Technology,2020,16(1):77-87. doi: 10.1016/j.dt.2019.04.015
    [5] PALTA E, GUTOWSKI M, FANG H B. A numerical study of steel and hybrid armor plates under ballistic impacts[J]. International Journal of Solids and Structures,2018,136-137:279-294. doi: 10.1016/j.ijsolstr.2017.12.021
    [6] MARISSEN R. Design with ultra strong polyethylene fibers[J]. Materials Sciences and Applications,2011,2(5):319-330. doi: 10.4236/msa.2011.25042
    [7] RUDNIK E, DOBKOWAKI Z. Thermal degradation of UHMWPE[J]. Journal of Thermal Analysis,1997,49(1):471-475. doi: 10.1007/BF01987473
    [8] AFSHARI M, SIKKEMA D J, LEE K, et al. High-performance fibers based on rigid and flexible polymers[J]. Polymer Reviews,2008,48(2):230-274. doi: 10.1080/15583720802020129
    [9] LIU Z, SONG B, WANG T T, et al. Significant improved interfacial properties of PBO fibers composites by in-situ constructing rigid dendritic polymers on fiber surface[J]. Applied Surface Science,2020,512:145719. doi: 10.1016/j.apsusc.2020.145719
    [10] QI G C, ZHANG B M, DU S Y. Assessment of F-Ⅲ and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens[J]. Composites Part A: Applied Science and Manufacturing,2018,112:549-557. doi: 10.1016/j.compositesa.2018.06.001
    [11] CHANG J, NIU H, WU D. High performance polyimide fibers[M]//BHAT G. Structure and properties of high-performance fibers. Woodhead Publishing, 2017: 301-323.
    [12] ZHANG T, JIN J, YANG S, et al. Preparation and properties of novel PIPD fibers[J]. Chinese Science Bulletin,2010,55(36):4203-4207. doi: 10.1007/s11434-010-3184-6
    [13] CUNIFF P M. Dimensionless parameters for optimization of textile based body armor systems[C]//Proceedings of the 18th International Symposium on Ballistics. Lancaster: Technomic Publishing, 1999.
    [14] STRAWHECKER K E, SANDOZ-ROSADO E J, STOCKDALE T A, et al. Interior morphology of high-performance polyethylene fibers revealed by modulus mapping[J]. Polymer,2016,103:224-232. doi: 10.1016/j.polymer.2016.09.062
    [15] BERGER L, KAUSCH H H, PLUMMER C J G. Structure and deformation mechanisms in UHMWPE-fibres[J]. Polymer,2003,44(19):5877-5884. doi: 10.1016/S0032-3861(03)00536-6
    [16] STANISZEWSKI J M, BOGETTI T A, WU V, et al. Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension[J]. International Journal of Solids and Structures,2020,206:354-369. doi: 10.1016/j.ijsolstr.2020.09.021
    [17] YEH J T, LIN S C, TU C W, et al. Investigation of the drawing mechanism of UHMWPE fibers[J]. Journal of Materials Science,2008,43(14):4892-4900. doi: 10.1007/s10853-008-2711-1
    [18] ZAMFIROVA G, PEREÑA J M, BENAVENTE R, et al. Mechanical properties of ultra high molecular weight polyethylene obtained with different cocatalyst systems[J]. Polymer Journal,2002,34(3):125-131. doi: 10.1295/polymj.34.125
    [19] LU Z Q, SI L M, DANG W B, et al. Transparent and mechanically robust poly(para-phenylene terepthalamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers[J]. Composites Part A: Applied Science and Manufacturing,2018,115:321-330. doi: 10.1016/j.compositesa.2018.10.009
    [20] CHATZI E G, KOENIG J L. Morphology and structure of kevlar fibers: A Review[J]. Polymer-Plastics Technology and Engineering,1987,26(3-4):229-270.
    [21] MCDANIEL P B, SOCKALINGAM S, DEITZEL J M, et al. The effect of fiber meso/nanostructure on the transverse compression response of ballistic fibers[J]. Composites Part A: Applied Science and Manufacturing,2017,94:133-145. doi: 10.1016/j.compositesa.2016.12.003
    [22] LEE J, KIM S S, KANG D, et al. Physicochemical characterization of polyimide (PI)/p-aramid: New functional and safe materials with improved heat resistance by a simple coating of polyimide on the surface of p-aramid[J]. Progress in Organic Coatings,2019,127:117-123. doi: 10.1016/j.porgcoat.2018.11.012
    [23] RODRÍGUEZ-MILLÁN M, ITO T, LOYA J A, et al. Development of numerical model for ballistic resistance evaluation of combat helmet and experimental validation[J]. Materials & Design,2016,110:391-403.
    [24] LI X G, GAO X L, KLEIVEN S. Behind helmet blunt trauma induced by ballistic impact: A computational model[J]. International Journal of Impact Engineering,2016,91:56-67. doi: 10.1016/j.ijimpeng.2015.12.010
    [25] PALTA E, FANG H B, WEGGEL D C. Finite element analysis of the advanced combat helmet under various ballistic impacts[J]. International Journal of Impact Engineering,2018,112:125-143. doi: 10.1016/j.ijimpeng.2017.10.010
    [26] YIN C Q, DONG J, TAN W J, et al. Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety[J]. Polymer,2015,75:178-186. doi: 10.1016/j.polymer.2015.08.025
    [27] 周映, 高鸿, 张梦颖, 等. 高性能有机纤维耐热性能与结构演变研究[J]. 合成纤维工业, 2019, 42(4):6-14. doi: 10.3969/j.issn.1001-0041.2019.04.003

    ZHOU Ying, GAO Hong, ZHANG Mengying, et al. Study on heat resistance and structural evolution of high-performance organic fibers[J]. China Synthetic Fiber Industry,2019,42(4):6-14(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.04.003
    [28] TAMARGO-MARTÍNEZ K, MARTÍNEZ-ALONSO A, MONTES-MORÁN M A, et al. Effect of oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties of single fiber/epoxy composites studied by Raman spectroscopy[J]. Composites Science and Technology,2011,71(6):784-790. doi: 10.1016/j.compscitech.2010.10.008
    [29] ANSARI M M, CHAKRABARTI A. Ballistic performance of unidirectional glass fiber laminated composite plate under normal and oblique impact[J]. Procedia Engineering,2017,173:161-168. doi: 10.1016/j.proeng.2016.12.053
    [30] MEYER C S, HAQUE B Z, O'BRIEN D J, et al. Mesoscale ballistic damage mechanisms of a single-layer woven glass/epoxy composite[J]. International Journal of Impact Engineering,2018,113:118-131. doi: 10.1016/j.ijimpeng.2017.11.005
    [31] NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing,2016,84:224-235. doi: 10.1016/j.compositesa.2016.01.014
    [32] CAO M, ZHAO Y, GU B H, et al. Progressive failure of inter-woven carbon-Dyneema fabric reinforced hybrid composites[J]. Composite Structures,2019,211:175-186. doi: 10.1016/j.compstruct.2018.12.024
    [33] NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: Experimental and numerical study[J]. International Journal of Impact Engineering,2019,132:103307. doi: 10.1016/j.ijimpeng.2019.05.021
    [34] NGUYEN L H, RYAN S, ORIFICI A C, et al. A penetration model for semi-infinite composite targets[J]. International Journal of Impact Engineering,2020,137:103438. doi: 10.1016/j.ijimpeng.2019.103438
    [35] GUO Z, CHEN W, ZHENG J. A semi-empirical design parameter for determining the inelastic strike-face mass fraction of soft armor targets[J]. International Journal of Impact Engineering,2019,125:83-92. doi: 10.1016/j.ijimpeng.2018.10.007
    [36] ZHIKHAREV M V, SAPOZHNIKOV S B. Two-scale modeling of high-velocity fragment GFRP penetration for assessment of ballistic limit[J]. International Journal of Impact Engineering,2017,101:42-48. doi: 10.1016/j.ijimpeng.2016.08.005
    [37] HA-MINH C, IMAD A, BOUSSU F, et al. Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic impact[J]. International Journal of Impact Engineering,2016,88:91-101. doi: 10.1016/j.ijimpeng.2015.08.011
    [38] ANSARI M M, CHAKRABARTI A, IQBAL M A. An experimental and finite element investigation of the ballistic performance of laminated GFRP composite target[J]. Composites Part B: Engineering,2017,125:211-226. doi: 10.1016/j.compositesb.2017.05.079
    [39] GREENHALGH E S, BLOODWORTH V M, IANNUCCI L, et al. Fractographic observations on Dyneema® composites under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing,2013,44:51-62. doi: 10.1016/j.compositesa.2012.08.012
    [40] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra-high molecular weight polyethylene composite[J]. International Journal of Impact Engineering,2015,75:174-183. doi: 10.1016/j.ijimpeng.2014.07.008
    [41] LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures,2017,179:245-257. doi: 10.1016/j.compstruct.2017.07.074
    [42] KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates[J]. European Journal of Mechanics A: Solids,2013,42:35-53. doi: 10.1016/j.euromechsol.2013.04.002
    [43] KARTHIKEYAN K, RUSSELL B P. Polyethylene ballistic laminates: Failure mechanics and interface effect[J]. Materials & Design,2014,63:115-125.
    [44] O'MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates[J]. International Journal of Impact Engineering,2015,86:249-264. doi: 10.1016/j.ijimpeng.2015.08.012
    [45] ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams[J]. International Journal of Impact Engineering,2016,93:153-165. doi: 10.1016/j.ijimpeng.2016.02.010
    [46] ATTWOOD J P, KHADERI S N, KARTHIKEYAN K, et al. The out-of-plane compressive response of Dyneema® composites[J]. Journal of the Mechanics and Physics of Solids,2014,70:200-226. doi: 10.1016/j.jmps.2014.05.017
    [47] LIU B G, WADLEY H N G, DESHPANDE V S. Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles[J]. International Journal of Solids and Structures,2019,178-179:180-198. doi: 10.1016/j.ijsolstr.2019.07.001
    [48] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5):DOI: 10.13801/j.cnki.fhclxb.20200722.003.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Ballistic performance of ultra-high molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica,2021,38(5):DOI: 10.13801/j.cnki.fhclxb.20200722.003(in Chinese).
    [49] 周庆, 何业茂, 刘婷. 对位芳香族聚酰胺纤维/环氧树脂复合材料防弹性能及其破坏机制[J]. 复合材料学报, 2019, 36(10): 2235-2246.

    ZHOU Qing, HE Yemao, LIU Ting. Bulletproof performance and bulletproof mechanism of para-aromatic polyamide fiber/epoxy resin composite material[J]. 2019, 36 (10): 2235-2246(in Chinese).
    [50] JIN Y X, MAI R M, WU C, et al. Comparison of ballistic impact effects between biological tissue and gelatin[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,78:292-297. doi: 10.1016/j.jmbbm.2017.11.033
    [51] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatin[J]. International Journal of Impact Engineering,2020,136:103417. doi: 10.1016/j.ijimpeng.2019.103417
    [52] VARGAS-GONZALEZ L R, GURGANUS J C. Hybridized composite architecture for mitigation of non-penetrating ballistic trauma[J]. International Journal of Impact Engineering,2015,86:295-306. doi: 10.1016/j.ijimpeng.2015.08.014
    [53] National Institute of Standards and Technology. Ballistic resistance of personal body armor: NIJ standard-0101.04[S]. Washington: National Law Enforcement and Corrections Technology Center, 2004.
    [54] 焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34(9):1960-1972.

    JIAO Yanan, HE Yemao, ZHOU Qing, et al. Influence factors on ballistic performance and failure mechanism of fiber reinforced resin matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(9):1960-1972(in Chinese).
    [55] WANG H W, HAZELL P J, SHANKAR K, et al. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices[J]. Polymer Testing,2017,61:17-26.
    [56] HSIEH A J, CHANTAWANSRI T L, HU W, et al. New insight into the influence of molecular dynamics of matrix elastomers on ballistic impact deformation in UHMWPE composites[J]. Polymer,2016,95:52-61. doi: 10.1016/j.polymer.2016.04.048
    [57] 何业茂. 高性能纤维增强树脂基复合材料防弹装甲的研究[D]. 天津: 天津工业大学, 2017.

    HE Yemao. Study on the ballistic armor of high-performance fiber reinforced resin matrix composite[D]. Tianjin: Tiangong University, 2017(in Chinese).
    [58] KULKARNI S G, GAO X L, HORNER S E, et al. Ballistic helmets: Their design, materials, and performance against traumatic brain injury[J]. Composite Structures,2013,101:313-331. doi: 10.1016/j.compstruct.2013.02.014
    [59] KARTIKEYA K, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing,2020,82:106293. doi: 10.1016/j.polymertesting.2019.106293
    [60] LINUL E, ŞERBAN D A, MARSAVINA L, et al. Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions[J]. Archives of Civil and Mechanical Engineering,2017,17(3):457-466. doi: 10.1016/j.acme.2016.12.009
    [61] CHU T L, HA-MINH C, IMAD A. Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact[J]. Composite Structures,2017,159:267-277. doi: 10.1016/j.compstruct.2016.09.039
    [62] ZHANG D, SUN Y, CHEN L, et al. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate[J]. Materials & Design,2014,54:315-322.
    [63] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Engineering of 3D warp interlock p-aramid fabric structure and its energy absorption capabilities against ballistic impact for body armour applications[J]. Composite Structures,2019,225:111179. doi: 10.1016/j.compstruct.2019.111179
    [64] YANG Y, CHEN X. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact[J]. Composite Structures,2019,224:111015. doi: 10.1016/j.compstruct.2019.111015
    [65] KARBALAIE M, YAZDANIRAD M, MIRHABIBI A. High performance Dyneema fiber laminate for impact resistance/macro structural composite[J]. Journal of Thermoplastic Composite Materials,2011,25:403-414.
    [66] LÄSSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering,2018,147:47-55. doi: 10.1016/j.compositesb.2018.04.030
    [67] LÄSSIG T, BAGUSAT F, MAY M, et al. Analysis of the shock response of UHMWPE composites using the inverse planar plate impact test and the shock reverberation technique[J]. International Journal of Impact Engineering,2015,86:240-248. doi: 10.1016/j.ijimpeng.2015.08.010
    [68] YANG Y, CHEN X. Study of energy absorption and failure modes of constituent layers in body armour panels[J]. Composites Part B: Engineering,2016,98:250-259. doi: 10.1016/j.compositesb.2016.04.071
    [69] YANG Y, CHEN X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures,2017,164:1-9. doi: 10.1016/j.compstruct.2016.12.057
    [70] CHEN X, ZHOU Y, WELLS G. Numerical and experimental investigations into ballistic performance of hybrid fabric panels[J]. Composites Part B: Engineering,2014,58:35-42. doi: 10.1016/j.compositesb.2013.10.019
    [71] MOUSAVI M V, KHORAMISHAD H. The effect of hybridization on high-velocity impact response of carbon fiber-reinforced polymer composites using finite element modeling, Taguchi method and artificial neural network[J]. Aerospace Science and Technology,2019,94:105393. doi: 10.1016/j.ast.2019.105393
    [72] OKHAWILAI M, HIZIROGLU S, RIMDUSIT S. Measurement of ballistic impact performance of fiber reinforced polybenzoxazine/polyurethane composites[J]. Measurement,2018,130:198-210. doi: 10.1016/j.measurement.2018.08.006
    [73] ZHOU Y, CHEN X, WELLS G. Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre[J]. Composites Part B: Engineering,2014,62:198-204. doi: 10.1016/j.compositesb.2014.02.022
    [74] GÜRGEN S, KUŞHAN M C. The ballistic performance of aramid-based fabrics impregnated with multi-phase shear thickening fluids[J]. Polymer Testing,2017,64:296-306. doi: 10.1016/j.polymertesting.2017.11.003
    [75] SILVA A O D, WEBER R P, MONTEIRO S N, et al. Effect of graphene oxide coating on the ballistic performance of aramid fabric[J]. Journal of Materials Research and Technology,2020,9(2):2267-2278. doi: 10.1016/j.jmrt.2019.12.058
    [76] LU Z, YUAN Z, CHEN X, et al. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact[J]. Composite Structures,2019,227:111208. doi: 10.1016/j.compstruct.2019.111208
    [77] ZHU W, HUANG G Y, FENG S S, et al. Conical nosed projectile perforation of polyethylene reinforced cross-ply laminates: Effect of fiber lateral displacement[J]. International Journal of Impact Engineering,2018,118:39-49. doi: 10.1016/j.ijimpeng.2018.04.005
    [78] REDDY P R S, REDDY T S, MADHU V, et al. Behavior of E-glass composite laminates under ballistic impact[J]. Materials & Design,2015,84:79-86.
    [79] CHEN L, ZHENG K, FANG Q. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates[J]. Polymer Testing,2017,63:54-64. doi: 10.1016/j.polymertesting.2017.07.031
    [80] LI X, ZHANG X, GUO Y, et al. Influence of fiber type on the impact response of titanium-based fiber-metal laminates[J]. International Journal of Impact Engineering,2018,114:32-42. doi: 10.1016/j.ijimpeng.2017.12.011
    [81] KĘDZIERSKI P, POPŁAWSKI A, GIELETA R, et al. Experimental and numerical investigation of fabric impact behavior[J]. Composites Part B: Engineering,2015,69:452-459. doi: 10.1016/j.compositesb.2014.10.028
    [82] HAN R G, QU Y J, YAN W M, et al. Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets[J]. Defence Technology,2020,16(4):900-909. doi: 10.1016/j.dt.2019.11.010
    [83] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures,2015,133:191-201. doi: 10.1016/j.compstruct.2015.06.081
    [84] KARTHIKEYAN K, KAZEMAHVAZI S, RUSSELL B P. Optimal fibre architecture of soft-matrix ballistic laminates[J]. International Journal of Impact Engineering,2016,88:227-237. doi: 10.1016/j.ijimpeng.2015.10.012
    [85] ZULKIFLI F, STOLK J, HEISSERER U, et al. Strategic positioning of carbon fiber layers in an UHMWPE ballistic hybrid composite panel[J]. International Journal of Impact Engineering,2019,129:119-127. doi: 10.1016/j.ijimpeng.2019.02.005
    [86] KĘDZIERSKI P, GIELETA R, MORKA A, et al. Experimental study of hybrid soft ballistic structures[J]. Composite Structures,2016,153:204-211. doi: 10.1016/j.compstruct.2016.06.006
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1859
  • HTML全文浏览量:  601
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 录用日期:  2020-11-24
  • 网络出版日期:  2020-12-02
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回