留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短切芳纶纤维/聚硅氧烷-甲基丙烯酸锌复合材料的结构与性能

雷卫华 陈可平

雷卫华, 陈可平. 短切芳纶纤维/聚硅氧烷-甲基丙烯酸锌复合材料的结构与性能[J]. 复合材料学报, 2021, 38(5): 1398-1406. doi: 10.13801/j.cnki.fhclxb.20201105.001
引用本文: 雷卫华, 陈可平. 短切芳纶纤维/聚硅氧烷-甲基丙烯酸锌复合材料的结构与性能[J]. 复合材料学报, 2021, 38(5): 1398-1406. doi: 10.13801/j.cnki.fhclxb.20201105.001
LEI Weihua, CHEN Keping. Structure and properties of short-cutted aramid fiber/ polysiloxane-zinc dimethylate composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1398-1406. doi: 10.13801/j.cnki.fhclxb.20201105.001
Citation: LEI Weihua, CHEN Keping. Structure and properties of short-cutted aramid fiber/ polysiloxane-zinc dimethylate composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1398-1406. doi: 10.13801/j.cnki.fhclxb.20201105.001

短切芳纶纤维/聚硅氧烷-甲基丙烯酸锌复合材料的结构与性能

doi: 10.13801/j.cnki.fhclxb.20201105.001
详细信息
    通讯作者:

    雷卫华,硕士,副研究员,研究方向为高分子材料及复合材料 E-mail:leiwh@caep.cn

  • 中图分类号: TB332

Structure and properties of short-cutted aramid fiber/ polysiloxane-zinc dimethylate composites

  • 摘要: 为提高聚硅氧烷-甲基丙烯酸锌(ZDMA)树脂材料的性能,采用短切通用型芳纶纤维与聚甲基乙烯基硅氧烷-ZDMA复合并在高温下交联固化,得到短切芳纶纤维/聚硅氧烷-ZDMA复合材料。采用SEM、FTIR、拉伸和压缩试验方法、霍普金斯压杆试验方法,表征了短切芳纶纤维/聚硅氧烷-ZDMA复合材料的结构和静态力学性能,研究了芳纶纤维用量和应变率对其动态压缩性能的影响。结果表明,短切芳纶纤维对胶料的流动性影响较大,短纤维分散不易均匀,整体均匀性不佳,用量较大时易于团聚,力学性能存在波动性。短切芳纶纤维的加入对提高短切芳纶纤维/聚硅氧烷-ZDMA复合材料拉伸强度效果明显,但伸长率大幅减小,对压缩应力提高较大。在低应变率下(800 s−1),芳纶纤维用量对短切芳纶纤维/聚硅氧烷-ZDMA复合材料动态压缩性能影响不大;在中高应变率(1500~2500 s−1)下,随着芳纶纤维用量的增加,短切芳纶纤维/聚硅氧烷-ZDMA复合材料动态压缩应力增大。无芳纶的聚硅氧烷-ZDMA复合材料的动态压缩性能对应变率较为敏感,短切芳纶纤维与高聚硅氧烷质量比为8%的短切芳纶纤维/聚硅氧烷-ZDMA复合材料在中高应变率(1500~3000 s−1)下的动态压缩性能较为稳定。

     

  • 图  1  芳纶纤维和芳纶纤维/聚硅氧烷-甲基丙烯酸锌(PMVS-ZDMA)复合材料的FTIR图谱

    Figure  1.  FTIR spectra of aramid fiber and aramid fiber/polysiloxane-zinc dimethylate (PMVS-ZDMA) composites

    图  2  不同芳纶纤维含量的芳纶纤维/PMVS-ZDMA复合材料拉伸断面的SEM图像

    Figure  2.  SEM images of tensile section of aramid fiber/PMVS-ZDMA composites with different aramid fiber contents

    图  3  芳纶纤维对芳纶纤维/PMVS-ZDMA复合材料拉伸性能的影响

    Figure  3.  Effects of aramid fiber on tensile properties of aramid fiber/PMVS-ZDMA compsites

    图  4  芳纶纤维对芳纶纤维/PMVS-ZDMA复合材料静态压缩性能的影响

    Figure  4.  Effects of aramid fiber on static compressive properties of aramid fiber/PMVS-ZDMA composites

    图  5  芳纶纤维含量对芳纶纤维/PMVS-ZDMA复合材料动态压缩性能的影响

    Figure  5.  Effects of aramid-fiber content on dynamic compressive properties of aramid fiber/PMVS-ZDMA composites

    图  6  不同应变率下PMVS-ZDMA和芳纶纤维/PMVS-ZDMA复合材料的动态压缩曲线

    Figure  6.  Dynamic compressive curves of PMVS-ZDMA and aramid fiber/ PMVS-ZDMA composites

  • [1] 邓本诚, 李俊山. 橡胶塑料共混改性[M]. 北京: 中国石化出版社, 1996.

    DENG Bencheng, LI Junshan. Rubber plastic blending and modification[M]. Beijing: China Petrochemical Press, 1996(in Chinese).
    [2] LU Y, LIU L, YANG C, et al. The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM[J]. European Polymer Journal,2005,41(3):577-588. doi: 10.1016/j.eurpolymj.2004.10.019
    [3] MENG Y, WEI Z, LU Y L, et al. Structure, morphology, and mechanical properties of polysiloxane elastomer composites prepared by in situ polymerization of zinc dimethacrylate[J]. Express Polymer Letters,2012,6(11):882-894. doi: 10.3144/expresspolymlett.2012.94
    [4] WANG Y, CHEN Z, DING J, et al. Preparation and properties of peroxide dynamically vulcanized poly(vinylidene fluoride)/silicone rubber/zinc dimethacrylate composites[J]. Polymer Composites,2016,37(4):1093-1100. doi: 10.1002/pc.23271
    [5] 伍社毛, 卢咏来, 刘力. 原位聚合纳米PZDMA补强POE 材料的研究[J]. 橡胶工业, 2002, 49(12):709-715.

    WU Shemao, LU Yonglai, LIU Li. In-site polymerization of nano-PZDMA/POE composite[J]. Rubber Industry,2002,49(12):709-715(in Chinese).
    [6] GAO G, ZHANG Z, ZHENG Y, et al. Effect of magnesium methacrylate and zinc methacrylate on bond properties of thermal insulation material based on NBR/EPDM blends[J]. Journal of Applied Polymer Science,2009,113 (6):3901-3909. doi: 10.1002/app.30415
    [7] NIE Y, HUANG G, QU L, et al. Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate[J]. Journal of Applied Polymer Science,2010,115 (1):99-106. doi: 10.1002/app.31045
    [8] CHEN Y, XU C, CAO L, et al. PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: Preparation, rheology, morphology, crystallization and mechanical properties[J]. Polymer Testing,2012,31 (6):728-736. doi: 10.1016/j.polymertesting.2012.05.010
    [9] CHEN Y, XU C. Stress- strain behaviors and crosslinked networks studies of natural rubber-zinc dimethacrylate composites[J]. Journal of Macromolecular Science Part B: Physics,2012,51(7):1384-1400. doi: 10.1080/00222348.2011.629904
    [10] LI C, YUAN Z, YE L. Facile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: Highly reinforcing effect and improvement mechanism of sealing resilience[J]. Composites Part A: Applied Science and Manufacturing,2019,126:105580.
    [11] XU C, CHEN Y, WANG Y, et al. Temperature dependence of the mechanical properties and the inner structures of natural rubber reinforced by in situ polymerization of zinc dimethacrylate[J]. Journal of Applied Polymer Science, 2013, 128(4): 2350-2357.
    [12] 郑元锁, 宋月贤, 黄振东. 芳纶短纤维对丁腈橡胶的增强作用[J]. 西安交通大学学报, 1998, 32(8):81-84.

    ZHENG Yuansuo, SONG Yuexian, HUANG Zhengdong. Reinforcement effect of aramid short fiber on nitrile rubber[J]. Journal of XianJiaotong University,1998,32(8):81-84(in Chinese).
    [13] 刘元顺, 李大宇. 纤维增强的新型高模量液体硅橡胶[J]. 世界橡胶工业, 2014, 41(6):22-25.

    LIU Yuansun, LI Dayu. New high modulus liquid silicone elastomer fiber-reinforced LSR[J]. World Rubber Industry,2014,41(6):22-25(in Chinese).
    [14] 武卫莉, 于涛. 碳纤维/硅橡胶/氟橡胶复合材料的制备[J]. 橡胶工业, 2018, 65(2):161-166.

    WU Weili, YU Tao. Preparation of carbon fiber/silicone rubber/fluoro rubber composite[J]. Rubber Industry,2018,65(2):161-166(in Chinese).
    [15] PARK E S. Mechanical properties and processibilty of glass-fiber-, wollastonite-, and fluoro-rubber-reinforced silicone rubber composites[J]. Journal of Applied Polymer Science,2007,105(2):460-468. doi: 10.1002/app.26063
    [16] VEARICK S B, DEMÉTRIO K B, XAVIERC R G, et al. Fiber-reinforced silicone for tracheobronchial stents: An experimental study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77: 494-500.
    [17] PRAVEEN S, CHAKRABORTY B C, JAYENDRAN S, et al. Effect of filler geometry on viscoelastic damping of graphite/aramid and carbon short fiber-filled SBR composites: A new insight[J]. Journal of Applied Polymer Science,2009,111(1):264-272. doi: 10.1002/app.29064
    [18] KASHANI M R. Aramid-short-fiber reinforced rubber as a tire tread composite[J]. Journal of Applied Polymer Science,2009,113(2):1355-1363. doi: 10.1002/app.30026
    [19] SHIBULAL G S, NASKAR K. RFL coated aramid short fiber reinforced thermoplastic elastomer: Mechanical, rheological and morphological characteristics[J]. Journal of Polymer Research,2011,18(6):2295-2306. doi: 10.1007/s10965-011-9643-1
    [20] HINTZE C, STOČEK R, HORST T, et al. Dynamic behavior of short aramid fiber-filled elastomer composites[J]. Polymer Engineering and Science,2014,54(12):2958-2964. doi: 10.1002/pen.23854
    [21] GAO J, YANG X, HUANG L H. Numerical prediction of mechanical properties of rubber composites reinforced by aramid fiber under large deformation[J]. Composite Structures,2018,201:29-37.
    [22] HE X, SHI X, HOCH M, et al. Mechanical properties of aramid fiber and carbon black filled hydrogenated nitrile rubber for packer compounds[J]. Polymer Composites,2018,39(9):3213-3226.
    [23] GAO J, YANG Z. Study of the viscoelasticity of chopped aramid fiber reinforced rubber composite[J]. Key Engineering Materials Online,2019,827(1):385-391.
    [24] ZHANG B, JIANG Y. Preparation of grephene@waterborne polyurethane microcapsules for improving mechanical and interface properties of aramid fibers/natural rubber composites[J]. Composite Interfaces,2019,26(7):571-583. doi: 10.1080/09276440.2018.1514146
    [25] WEI Z, LU Y, MENG Y, et al. Study on wear, cutting and chipping behaviors of hydrogenated nitrile butadiene rubber reinforced by carbon black and in-situ prepared zinc dimethacrylate[J]. Journal of Applied Polymer Science,2012,124(6):4564- 4571.
    [26] SHIRAZI M, TALMA A G, NOORDERMEER J W M. Viscoelastic properties of short aramid fibers-reinforced rubbers[J]. Journal of Applied Polymer Science, 2013, 128(4): 2255-2261.
    [27] RAJA S N, BASU S, LIMAYE A M, et al. Strain-dependent dynamic mechanical properties of Kevlar to failure: Structural correlations and comparisons to other polymers[J]. Materials Today Communications,2015,2:33-37.
    [28] 张贤淼, 董激文. 利用FTIR-ATR快速鉴别几种常见产业用纤维[J]. 产业用纺织品, 2015(9): 31-35.

    ZHANG Xianmiao, DONG Jiwen. Rapid identification of several common industrial fibers with FTIR-ATR[J]. Technical Textiles, 2015(9): 31-35(in Chinese).
    [29] 陈国强. 国产对位芳纶纤维分子结构分析[J]. 山东纺织科技, 2015(3): 49-52.

    CHEN Guoqiang. Analysis of domestic para-aramid molecular structure[J]. Shandong Textile Science & Technology, 2015(3): 49-52(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  1125
  • HTML全文浏览量:  430
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-16
  • 录用日期:  2020-10-27
  • 网络出版日期:  2020-11-06
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回