留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能

梁艳莉 马剑琪 郭少波

梁艳莉, 马剑琪, 郭少波. CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能[J]. 复合材料学报, 2021, 38(5): 1551-1557. doi: 10.13801/j.cnki.fhclxb.20200925.001
引用本文: 梁艳莉, 马剑琪, 郭少波. CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能[J]. 复合材料学报, 2021, 38(5): 1551-1557. doi: 10.13801/j.cnki.fhclxb.20200925.001
LIANG Yanli, MA Jianqi, GUO Shaobo. Preparation and catalytic properties of CoFe2O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1551-1557. doi: 10.13801/j.cnki.fhclxb.20200925.001
Citation: LIANG Yanli, MA Jianqi, GUO Shaobo. Preparation and catalytic properties of CoFe2O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1551-1557. doi: 10.13801/j.cnki.fhclxb.20200925.001

CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能

doi: 10.13801/j.cnki.fhclxb.20200925.001
基金项目: 陕西省教育厅科技计划项目(20JK0571)
详细信息
    通讯作者:

    马剑琪,博士,硕士生导师,研究方向为贵金属催化 E-mail:jianqima@163.com

  • 中图分类号: O643.36

Preparation and catalytic properties of CoFe2O4@PDA@Pt magnetic composite with core shell structure

  • 摘要: 采用溶剂热法制备磁性CoFe2O4亚微球,以CoFe2O4为核在碱性条件下将多巴胺(DA)聚合在其表面,利用乙二醇和聚多巴胺(PDA)的多羟基还原性,将Pt原位还原负载在CoFe2O4@PDA表面,合成纳米核壳型CoFe2O4@PDA@Pt复合材料。利用TEM、XRD、振动样品磁强计(VSM)和XPS对CoFe2O4@PDA@Pt复合材料的微观形貌、结构和晶型等进行表征。以无机染料铁氰酸钾和有机染料对硝基苯酚为目标污染物,探究CoFe2O4@PDA@Pt复合材料的催化活性。结果表明,2 min内CoFe2O4@PDA@Pt复合材料对铁氰酸钾降解率为95%以上,对对硝基苯酚降解率约为99.3%。

     

  • 图  1  CoFe2O4@聚多巴胺(PDA)@Pt复合材料的制备过程

    Figure  1.  Preparation process of CoFe2O4@ polydopamine (PDA)@Pt composite

    Tris—Tris(hydroxymethyl)methyl aminomethane; NaAC—Sodium acetate; DA—Dopamine

    图  2  CoFe2O4 ((a), (b))、CoFe2O4@PDA ((c), (d))和CoFe2O4@PDA@Pt复合材料((e), (f))的TEM图像

    Figure  2.  TEM images of CoFe2O4 ((a), (b)), CoFe2O4@PDA ((c), (d)) and CoFe2O4@PDA@Pt composite ((e), (f))

    图  3  硼氢化钠法((a), (b))及PDA还原法((c), (d)) CoFe2O4@PDA@Pt复合材料的TEM图像

    Figure  3.  TEM images of CoFe2O4@PDA@Pt composite by sodium borohydride method ((a), (b)) and by PDA method ((c), (d))

    图  4  CoFe2O4、CoFe2O4@PDA和 CoFe2O4@PDA@Pt复合材料的振动样品磁强计(VSM)曲线

    Figure  4.  Vibration sample magnetometer (VSM) curves of CoFe2O4, CoFe2O4@PDA and CoFe2O4@PDA@Pt composite

    图  5  CoFe2O4、CoFe2O4@PDA和CoFe2O4@PDA@Pt复合材料的XRD图谱

    Figure  5.  XRD patterns of CoFe2O4, CoFe2O4@PDA and CoFe2O4@PDA@Pt composite

    图  6  CoFe2O4@PDA@Pt复合材料的XPS图谱: (a) XPS全谱; (b) Co2p; (c) Fe2p; (d) N1s; (e) Pt4f

    Figure  6.  XPS spectra of CoFe2O4@PDA@Pt composite: (a) XPS spectrum; (b) Co2p; (c) Fe2p; (d) N1s; (e) Pt4f

    图  7  对硝基苯酚及对硝基酚钠紫外-可见光图谱(a); 无催化剂的对硝基苯酚紫外-可见光图谱(b); CoFe2O4@PDA@Pt复合材料催化对硝基苯酚的降解曲线(c); NaBH4还原对硝基苯酚的准一级动力学拟合曲线(d); 铁氰酸钾和硫代硫酸钠的紫外-可见光图谱(e);CoFe2O4@PDA@Pt复合材料催化铁氰酸钾的降解曲线(f)

    Figure  7.  UV-vis spectra of p-nitrophenol and p-nitrophenol sodium (a); UV-vis spectra without catalyst p-nitrophenol (b); Degradation curves of p-nitrophenol catalyzed by CoFe2O4@PDA@Pt composite (c); Quasi-first-order kinetics fit curves of reduction of 4-NP by NaBH4 (d); UV-vis spectra of potassium ferricyanate and sodium thiosulfate (e); Degradation of potassium ferricyanate catalyzed by CoFe2O4@PDA@Pt composite (f)

    4-NP—p-Nitrophenol

  • [1] SAUT K, ROGACH A L, JACKEL F, et al. Properties and applications of colloidal nonsphericalnoble metal nanoparticles[J]. Advanced Materials,2010,22(16):1805-1825. doi: 10.1002/adma.200902557
    [2] 刘艳伟, 杨滨, 李艳. 铂族金属在现代工业中的应用[J]. 南方金属, 2009(2):1-3, 19. doi: 10.3969/j.issn.1009-9700.2009.02.001

    LIU Y W, YANG B, LI Y. Applications of platinum-group metals in modern industries[J]. Southern Metals,2009(2):1-3, 19(in Chinese). doi: 10.3969/j.issn.1009-9700.2009.02.001
    [3] 孟庆泉, 叶青松, 刘伟平, 等. 负载型贵金属催化剂在药物合成中的应用[J]. 贵金属, 2012, 33(3):78-82. doi: 10.3969/j.issn.1004-0676.2012.03.013

    MENG Q Q, YE Q S, LIU W P, et al. Application of precious metal catalysts in drug synthesis[J]. Precious Metals,2012,33(3):78-82(in Chinese). doi: 10.3969/j.issn.1004-0676.2012.03.013
    [4] ZHOU Y, MA Y, LAN G, et al. A highly stable and active mesoporous ruthenium catalyst for ammonia synthesis prepared by a RuCl3/SiO2-templated approach[J]. Chinese Journal of Catalysis,2019,40(1):114-123. doi: 10.1016/S1872-2067(18)63192-4
    [5] ZHANG M, ZHENG J, ZHENG Y, et al. Preparation, characterization and catalytic activity of core-satellite Au/Pdop/SiO2/Fe3O4 magnetic nanocomposites[J]. RSC Advances,2013,3(33):13818-13824. doi: 10.1039/c3ra41537f
    [6] QIAO B, LIANG J X, WANG A, et al. Single atom gold catalysts for low-temperature CO oxidation[J]. Chinese Journal of Catalysis,2016,37(10):1580-1586. doi: 10.1016/S1872-2067(16)62529-9
    [7] 冯晓宁. 有机小分子在贵金属负载的MgO (001)表面的吸附与解离的理论研究[D]. 福州: 福州大学, 2017.

    FENG X N. The theoretical research on small organ adsorbed on noble metal supported MgO (001) surface[D]. Fuzhou: Fuzhou University, 2017(in Chinese).
    [8] 崔青, 赵红, 张长桥, 等. 壳聚糖功能微球负载贵金属的研究进展[J]. 化工进展, 2017, 36(2):595-601.

    CUI Q, ZHAO H, ZHANG C Q, et al. Research progress in noble metal-supported chitosan functional microspheres[J]. Chemical Industry and Engineering Progress,2017,36(2):595-601(in Chinese).
    [9] 杨丽. 体系相互作用与发光和催化机理研究[D]. 合肥: 中国科学技术大学, 2017.

    YANG L. Study of system interactions on luminescence and catalytic mechanism[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [10] 蔡涛, 张春林. 磁性纳米材料在肿瘤诊断及治疗领域的应用进展[J]. 生物骨科材料与临床研究, 2019, 16(6):67-69. doi: 10.3969/j.issn.1672-5972.2019.06.016

    CAI T, ZHANG C L. Application of magnetic nanomaterials in treatment and dignosis of tumor[J]. Orthopaedic Biomechanics Materials and Clinical Study,2019,16(6):67-69(in Chinese). doi: 10.3969/j.issn.1672-5972.2019.06.016
    [11] 杨展华, 王锡晨, 刘元军. 不同磁性材料掺杂石墨烯复合材料的吸波性能[J]. 染整技术, 2020, 42(5):6-11. doi: 10.3969/j.issn.1005-9350.2020.05.002

    YANG Z H, WANG X C, LIU Y J. Absorbing properties of graphene composites doped with different magnetic materials[J]. Textile Dyeing and Finishing Journal,2020,42(5):6-11(in Chinese). doi: 10.3969/j.issn.1005-9350.2020.05.002
    [12] JAFFREICRENAULT N, MARTELET C, CHEVOLOT Y, et al. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads[J]. Sensors,2007,7(4):589-614. doi: 10.3390/s7040589
    [13] JEONG U, TENG X, WANG Y, et al. Superparamagnetic colloids: Controlled synthesis and niche applications[J]. Advanced Materials,2007,19(1):33-60. doi: 10.1002/adma.200600674
    [14] HERMAN D A, FERGUSON P, CHEONG S, et al. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging[J]. Chemical Communications,2011,47(32):9221-9223. doi: 10.1039/c1cc13416g
    [15] SHYLESH S, SCHUNEMANN V, THIEL W R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis[J]. Angewandte Chemie International Edition,2010,49(20):3428-3459.
    [16] TIAN Q, WANG X, MAO F, et al. Absorption performanceof DMSA modified Fe3O4@SiO2 core/shell magnetic nanocomposite for Pb2+ removal[J]. Journal of Central South University,2018,25(4):709-718. doi: 10.1007/s11771-018-3775-y
    [17] ZENG T, ZHANG X, NIU H, et al. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene[J]. Applied Catalysis B: Environmental,2013,134-135:26-33.
    [18] 朱正旺, 冯锐, 柳扬, 等. 类鱼骨结构CoFe2O4纳米纤维的制备与性能[J]. 无机材料学报: 2020, 35(9): 1011-1016.

    ZHU Z W, FENG R, LIU Y, et al. Preparation and property of CoFe2O4 nanofibers with fishbone-like structure[J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016(in Chinese).
    [19] 王双, 罗万富, 马明双, 等. 多功能Au/TiO2/CoFe2O4材料用于原位SERS监测4-氯苯酚光催化过程[J]. 光谱学与光谱分析, 2018, 38(s1):165-166.

    WANG S, LUO W F, MA M S, et al. Multifunctional Au/TiO2/CoFe2O4 nanocomposite for in-situ SERS monitoring of photocatalysis of 4-chlorophenol[J]. Spectroscopy and Spectral Analysis,2018,38(s1):165-166(in Chinese).
    [20] YE W C, HU H, ZHANG H, et al. Multi-walled carbon nanotube supported Pd and Pt nanoparticles with high solution affinity for effective electrocatalysis[J]. Applied Surface Science,2010,256(22):6723-6728. doi: 10.1016/j.apsusc.2010.04.080
    [21] 李跃军, 曹铁平, 赵艳辉, 等. Bi@Bi2Sn2O7/TiO2等离子体复合纤维的制备及增强的光催化产氢活性[J]. 无机化学学报, 2019, 35(8):1371-1378.

    LI Y J, CAO T P, ZHAO Y H, et al. Preparation of Bi@Bi2Sn2O7/TiO2 plasmonic composite fibers with enhanced photocatalytic hydrogen generation activity[J]. Chinese Journal of Inorganic Chemistry,2019,35(8):1371-1378(in Chinese).
    [22] LIMA D R, JIANG N, LIU X, et al. Employing calcination as a facile strategy to reduce the cytotoxicity in CoFe2O4 and NiFe2O4 nanoparticles[J]. ACS Applied Materials & Interfaces,2017,9(45):39830-39838.
    [23] LONG Y, LIANG K, NIU J, et al. Pt NPs immobilized on core-shell magnetite microparticles: Novel and highly efficient catalysts for the selective aerobic oxidation of ethanol and glycerol in water[J]. Dalton Transactions,2015,44(18):8660-8668. doi: 10.1039/C5DT00779H
    [24] BHUI D K, MISRA A. Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity[J]. Carbohydrate Polymers,2012,89(3):830-835. doi: 10.1016/j.carbpol.2012.04.017
    [25] GUO S, DONG S, WANG E, et al. A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures[J]. Chemistry: A European Journal,2009,15(10):2416-2424. doi: 10.1002/chem.200801942
  • 加载中
图(7)
计量
  • 文章访问数:  1145
  • HTML全文浏览量:  480
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 录用日期:  2020-09-17
  • 网络出版日期:  2020-09-25
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回