留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响

杜婷婷 叶云霞 刘远方 李浩楠 任旭东 符永宏

杜婷婷, 叶云霞, 刘远方, 等. 纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响[J]. 复合材料学报, 2021, 38(5): 1435-1445. doi: 10.13801/j.cnki.fhclxb.20200921.003
引用本文: 杜婷婷, 叶云霞, 刘远方, 等. 纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响[J]. 复合材料学报, 2021, 38(5): 1435-1445. doi: 10.13801/j.cnki.fhclxb.20200921.003
DU Tingting, YE Yunxia, LIU Yuanfang, et al. Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1435-1445. doi: 10.13801/j.cnki.fhclxb.20200921.003
Citation: DU Tingting, YE Yunxia, LIU Yuanfang, et al. Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1435-1445. doi: 10.13801/j.cnki.fhclxb.20200921.003

纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响

doi: 10.13801/j.cnki.fhclxb.20200921.003
基金项目: 装备预先研究项目(61409230314);江苏省自科基金(BEK20171297);江苏省六大人才高峰项目(GDZB-020);镇江市重点研发计划
详细信息
    通讯作者:

    叶云霞,博士,教授,硕士生导师,研究方向为激光精密加工 E-mail:yeyunxia@ujs.edu.cn

  • 中图分类号: TN249

Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance

  • 摘要: 采用纳秒激光对碳纤维增强树脂基(CFRP)复合材料进行表面预处理,调控其表面成分、粗糙度和表面润湿性,然后采用SEM、接触角测量仪、光学轮廓仪、XPS等表征CFRP复合材料的表面微观形貌、接触角、粗糙度和化学成分,并通过拉伸剪切实验评价和分析激光表面处理对CFRP复合材料胶接强度的影响规律和机制。结果表明:优化激光表面处理参数,可以去除CFRP复合材料表面的环氧树脂胶,调控其表面成分、粗糙度和表面润湿性;与未处理的CFRP复合材料相比,激光表面处理后的CFRP复合材料表面化学成分改变,表面粗糙度有所增加,润湿性提高,胶接强度也增大;与未处理CFRP复合材料相比,激光离焦量分别为5 mm、10 mm和15 mm时,处理后的CFRP复合材料胶接强度分别提高了129.41%、112.13%和105.88%;激光表面处理CFRP复合材料的表面润湿性和表面粗糙度均高于机械处理CFRP复合材料,但激光处理导致的热损伤对胶接强度提高有负面影响。

     

  • 图  1  碳纤维增强树脂基(CFRP)复合材料试样

    Figure  1.  Sample of carbon fiber reinforced plastics (CFRP) composite

    图  2  纳秒激光加工设备、加工过程及激光扫描路径

    Figure  2.  Nanosecond laser processing system, machining process and laser scanning path

    图  3  CFRP复合材料胶接示意图

    Figure  3.  Bonding diagram of CFRP composite

    图  4  不同方式处理CFRP复合材料的表面形貌((a), (d), (g), (j), (m)为宏观图像; (b), (c), (e), (f), (h), (i), (k), (l), (n), (o) SEM图像)

    Figure  4.  Surface morphologies of CFRP composites after different treatment ((a), (d), (g), (j), (m) are macro images; (b), (c), (e), (f), (h), (i), (k), (l), (n), (o) are SEM images)

    图  5  不同方式处理CFRP复合材料表面与水和甘油的接触角

    Figure  5.  Contact angle with water and glycerol of surface of CFRP composites after different treatment

    图  6  不同方式处理CFRP复合材料的表面自由能

    Figure  6.  Surface energy of CFRP composites after different treatment

    图  7  不同方式处理CFRP复合材料表面的粗糙度

    Figure  7.  Surface roughness of CFRP composites after different treatment

    图  8  未处理和机械处理CFRP复合材料的拉伸断裂形貌

    Figure  8.  Tensile fracture morphologies of untreated and mechanical treated CFRP composites

    图  9  不同激光处理CFRP复合材料的拉伸断裂形貌: (a) 3#试样; (b) 4#试样; (c) 5#试样; (d)~(f)分别为(a)~(c)的局部放大图

    Figure  9.  Tensile fracture morphologies of CFRP composites by different laser processing: (a) 3# sample; (b) 4# sample; (c) 5# sample; (d)-(f) Partially enlarged views of (a)-(c) respectively

    图  10  不同方式处理CFRP复合材料的胶接强度

    Figure  10.  Bonding strength of CFRP composites after different treatment

    图  11  未处理和机械处理CFRP复合材料的剖面: (a) 剖面示意图; (b) CFRP复合材料完整剖面; (c)~(d) 1#试样的剖面; (e)~(f) 2#试样的剖面

    Figure  11.  Cross-section of untreated and mechanically treated CFRP composites: (a) Schematic diagram of cross-section; (b) Complete cross-section of CFRP composite; (c)-(d) Cross-sections of 1# sample; (e)-(f) Cross-sections of 2# sample

    图  12  不同激光处理CFRP复合材料的剖面: (a) 3#试样剖面; (b)~(c)为(a)的局部区域放大图; (d) 4#试样剖面;(e)~(f)为(d)的局部区域放大图; (g) 5#试样剖面; (h)~(i)为(g)的局部区域放大图

    Figure  12.  Cross-section of CFRP composites by different laser processing: (a) Cross-section of 3# sample; (b)-(c) Partially enlarged views of (a); (d) Cross-section of 4# sample; (e)-(f) Partially enlarged views of (d); (g) Cross-sections of 5# sample; (h)-(i) Partially enlarged views of (g)

    表  1  激光处理参数

    Table  1.   Parameters of laser processing

    ParameterValue
    Scanning speed/(mm·s−1) 10
    Mean power/W 9
    Repetition frequency/kHz 10
    Pulse width/ns 20
    Hatch spacing/mm 0.1
    Overlap rate >90%
    下载: 导出CSV

    表  2  CFRP复合材料编号及其处理方式

    Table  2.   Numbers and corresponding treatment methods of CFRP composite

    SampleTreatment method
    1# Untreated
    2# Mechanical treated
    3# Laser defocus of 5 mm
    4# Laser defocus of 10 mm
    5# Laser defocus of 15 mm
    下载: 导出CSV

    表  3  蒸馏水和甘油的表面自由能参数[16]

    Table  3.   Surface energy parameters of distilled water and glycerin[16]

    Test liquid${\gamma }_{ {{\rm{L}}} }^{}/({\rm{mJ} }\cdot { {\rm{m} } }^{-2})$${\gamma }_{\mathrm{L} }^{\mathrm{d} }/({\rm{mJ}}\cdot {{\rm{m}}}^{-2})$${\gamma }_{\mathrm{L} }^{\mathrm{P} }/({\rm{mJ}}\cdot {{\rm{m}}}^{-2})$
    Distilled water72.821.851
    Glycerin64.034.030
    下载: 导出CSV

    表  4  CFRP复合材料表面化学成分(原子比)

    Table  4.   Chemical composition of surface of CFRP composites (Atomic ratio)

    Sample1#2#3#4#5#
    C/at% 62.15 83.87 83.31 86.83 79.12
    O/at% 25.80 14.53 14.14 11.73 16.51
    Si/at% 9.98 0 0 0 0
    Other/at% 2.07 1.60 2.55 1.44 4.37
    下载: 导出CSV
  • [1] 李威, 郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学, 2011, 4(3):201-212. doi: 10.3969/j.issn.2095-1531.2011.03.001

    LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields[J]. Chinese Optics,2011,4(3):201-212(in Chinese). doi: 10.3969/j.issn.2095-1531.2011.03.001
    [2] 罗益锋. 碳纤维及其复合材料在主要应用领域的突破方向与技术进展[J]. 高科技纤维与应用, 2019, 44(6):1-12.

    LUO Y F. Breakthrough direction and technical progress of carbon fiber and its CFRP in main application areas[J]. Hi-Tech Fiber and Application,2019,44(6):1-12(in Chinese).
    [3] 王冰佳, 黄强, 呼慧. 复合材料及碳纤维在风力机叶片中的应用现状[J]. 电站系统工程, 2019, 35(3):43-45.

    WANG B J, HUANG Q, HU H. Application status and development of wind power blade carbon fiber composites[J]. Power System Engineering,2019,35(3):43-45(in Chinese).
    [4] 杜姗姗. 碳纤维及其复合材料的应用[J]. 化纤与纺织技术, 2013, 42(4):21-26. doi: 10.3969/j.issn.1672-500x.2013.04.006

    DU S S. Application of carbon fiber and its composites[J]. Chemical Fiber and Textile Technology,2013,42(4):21-26(in Chinese). doi: 10.3969/j.issn.1672-500x.2013.04.006
    [5] 荆楠. 碳纤维复合材料连接技术研究[J]. 科技风, 2019(4):206-207.

    JING N. The research of joint techniques for carbon fiber composite materials[J]. Technology Wind,2019(4):206-207(in Chinese).
    [6] BALDAN A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment[J]. Journal of Materials Science,2004,39(1):1-49.
    [7] LIU Y, ZHANG X, SONG C C, et al. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites[J]. Materials and Design,2015,88:810-819.
    [8] 易增博, 冯利邦, 郝相忠, 等. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1):67-74. doi: 10.11901/1005.3093.2014.322

    YI Z B, FENG L B, HAO X Z, et al. Effect of surface treatment on properties of carbon fiber and reinforced composites[J]. Chinese Journal of Materials Research,2015,29(1):67-74(in Chinese). doi: 10.11901/1005.3093.2014.322
    [9] 刘晓东, 吴磊, 孔谅, 等. 空气等离子处理对碳纤维增强复合材料表面特性及胶接性能的影响[J]. 上海交通大学学报, 2019, 53(8):971-977.

    LIU X D, WU L, KONG L, et al. Effect of surface and adhesive-bonded properties of carbon fiber reinforced plastic/polymer and atmosphere plasma processing[J]. Journal of Shanghai Jiaotong University,2019,53(8):971-977(in Chinese).
    [10] GENNA S, LEONE C, UCCIARDELLO N, et al. Increasing adhesive bonding of carbon fiber reinforced thermoplastic matrix by laser surface treatment[J]. Polymer Engineering and Science,2017,57(7):685-692.
    [11] GAO Q, LI Y, WANG H E, et al. Effect of scanning speed with UV laser cleaning on adhesive bonding tensile properties of CFRP[J]. Applied Composite Materials,2019,26(4):1087-1099.
    [12] SEE T L, LIU Z, CHEETHAM S, et al. Laser abrading of carbon fiber reinforced composite for improving paint adhesion[J]. Applied Physics A,2014,117(3):1045-1054.
    [13] LI Y Y, MENG S, GONG Q M, et al. Experimental and theoretical investigation of laser pretreatment on strengthening the heterojunction between carbon fiber-reinforced plastic and aluminum alloy[J]. ACS Applied Materials and Interfaces,2019,11(24):22005-22014.
    [14] AKMAN E, ERDOĞ AN Y, BORA M Ö, et al. Investigation of accumulated laser fluence and bond line thickness effects on adhesive joint performance of CFRP composites[J]. International Journal of Adhesion and Adhesives,2019,89:109-116.
    [15] 中国国家标准化管理委员会. 胶粘剂单搭接拉伸剪切强度试验方法: GB/T 33334—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Single-lap tensile shear strength testing of adhesive: GB/T 33334—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [16] 吴瑶, 孔海娟, 丁小马, 等. 激光处理对CFRP与铝胶接性能的研究[J]. 玻璃钢/复合材料, 2018(4):56-61.

    WU Y, KONG H J, DING X M, et al. Effect of laser treatment on properties of CFRP/aluminum adhesive[J]. Fiber Reinforced Plastics/Composites,2018(4):56-61(in Chinese).
    [17] 徐广标, 杨立荣. 3种天然纤维表面自由能计算与评价[J]. 东华大学学报(自然科学版), 2013, 39(3):280-282, 337.

    XU G B, YANG L R. Calculating and evaluation of surface free energy of three kinds of natural fibers[J]. Journal of Donghua University (Natural Science),2013,39(3):280-282, 337(in Chinese).
    [18] BUSSCHER H J, PELT A W J V, BOER P D, et al. The effect of surface roughening of polymers on measured contact angles of liquids[J]. Colloids and Surfaces,1984,9(4):319-331.
    [19] 中国国家标准化管理委员会. 胶粘剂–主要破坏类型的表示法: GB/T 16997—1997[S]. 北京: 中国标准出版社, 1998.

    Standardization Administration of the People’s Republic of China. Adhesives-designation of main failure patterns: GB/T 16997—1997[S]. Beijing: China Standards Press, 1998(in Chinese).
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  413
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 录用日期:  2020-09-06
  • 网络出版日期:  2020-09-21
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回