留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学法原位合成Zn/Co-ZIF材料及电容性能

赵雪静 孙晓君 魏金枝 张婷 刘欣然

赵雪静, 孙晓君, 魏金枝, 等. 电化学法原位合成Zn/Co-ZIF材料及电容性能[J]. 复合材料学报, 2021, 38(5): 1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001
引用本文: 赵雪静, 孙晓君, 魏金枝, 等. 电化学法原位合成Zn/Co-ZIF材料及电容性能[J]. 复合材料学报, 2021, 38(5): 1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001
ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001
Citation: ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001

电化学法原位合成Zn/Co-ZIF材料及电容性能

doi: 10.13801/j.cnki.fhclxb.20200831.001
基金项目: 国家自然科学基金(21676066);黑龙江省自然科学基金(LH2019B026)
详细信息
    通讯作者:

    魏金枝,博士,教授,硕士生导师,研究方向为环境功能材料的制备及性能 E-mail:weijz0451@163.com

  • 中图分类号: O646

Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties

  • 摘要: 采用电化学法原位合成双金属Zn/Co-类沸石类咪唑骨架材料(ZIF)。通过改变反应溶剂配比、电压大小、反应时间及金属钴盐添加量来探究材料的最佳合成条件。在N,N-二甲基甲酰胺(DMF)与乙醇(EtOH)的体积比为1∶4,外加电压为5 V,外加金属钴盐为0.08 g时,合成不规则层状颗粒结构的Zn/Co-ZIF。以Zn/Co-ZIF为活性物质制备电极用于超级电容器性能研究,并与同条件下电化学法原位合成的ZIF-8作对比。通过循环伏安(CV)、恒电流充放电(GCD)及交流阻抗(EIS)等测试手段探究其电容性能。结果表明,不同扫描速度下Zn/Co-ZIF电极材料的CV曲线有一对氧化还原峰,表现出明显的赝电容特性。在1 A/g的电流密度下,Zn/Co-ZIF电极材料的比电容为189 F/g,高于ZIF-8电极(72 F/g),2000次循环后,比电容值仍能保持初始值的90.5%。

     

  • 图  1  不同溶剂配比(a)、外加电压(b)和钴盐添加量(c)下的Zn/Co-类沸石类咪唑骨架材料(ZIF)的XRD图谱

    Figure  1.  XRD patterns of Zn/Co-zeolitic imidazolate frameworks (ZIF) with different solvent ratios (a), applied voltage (b) and cobalt salt addition amount (c)

    图  2  Zn/Co-ZIF材料 (a)及ZIF-8 (b)的SEM图像

    Figure  2.  SEM patterns of Zn/Co-ZIF material (a) and ZIF-8 (b)

    图  3  Zn/Co-ZIF材料的EDS图谱

    Figure  3.  EDS spectrum of Zn/Co-ZIF material

    图  4  2-甲基咪唑和Zn/Co-ZIF材料的FTIR图谱

    Figure  4.  FTIR spectra of 2-methylimidazole and Zn/Co-ZIF material

    图  5  Zn/Co-ZIF材料及ZIF-8的N2吸附-脱附等温曲线

    Figure  5.  Nitrogen adsorption-desorption isotherm curves of Zn/Co-ZIF material and ZIF-8

    图  6  ZIF-8和Zn/Co-ZIF材料的循环伏安曲线(a)、不同扫描速率下Zn/Co-ZIF材料的循环伏安曲线(b)及Zn/Co-ZIF材料峰电流与扫描速率平方根的线性关系(IaIc分别为阳极和阴极电流) (c)

    Figure  6.  CV curves of Zn/Co-ZIF material and ZIF-8 (a), Cyclic voltammetry curves of Zn/Co-ZIF material at different scanning rates (b) and Linear relationship between Zn/Co-ZIF material peak current and square root of scan rate (Ia and Ic represent anode current and cathode current, respectively) (c)

    v—Scanning rate

    图  7  Zn/Co-ZIF材料和ZIF-8在1 A/g下恒电流充放电曲线(a)、不同电流密度下Zn/Co-ZIF材料的恒电流充放电曲线(b)及Zn/Co-ZIF材料和ZIF-8的倍率特性曲线和(c)循环稳定性(d)

    Figure  7.  GCD curves of Zn/Co-ZIF material and ZIF-8 at 1 A/g (a), GCD curves of Zn/Co-ZIF material at different current (b), rate capability curves (c) and cycling stability (d) of Zn/Co-ZIF material and ZIF-8

    图  8  Zn/Co-ZIF材料和ZIF-8的电化学阻抗图谱

    Figure  8.  Electrochemical impedance spectroscopies of Zn/Co-ZIF material and ZIF-8

    CPE—Constant phase element; Rs—Solution resistance; Rp—Polarization resistance

  • [1] 李艺, 张琳. 能源转型背景下传统能源与新能源发展的思考[J]. 电力勘测设计, 2020(4):66-71.

    LI Y, ZHANG L. Thought on the development of the traditional energy and new energy in the context of energy transition[J]. Elecctric Power Survey & Design,2020(4):66-71(in Chinese).
    [2] ZHANG Q F, UCHAKER E, CANDELARIAS L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews,2013,42(7):3127-3171.
    [3] 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9):1-12.

    XIAO M, SU Y P, DU B X. Research progress of supercapacitors[J]. Electronic Components and Materials,2019,38(9):1-12(in Chinese).
    [4] YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4(4):1300816.
    [5] CHENG Y W, ZHANG H B, LU S T, et al. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes[J]. Nanoscale,2013,5(3):1067-1073.
    [6] 郑文庆, 郑玉婴, 张祥, 等. NiCo2O4复微球的制备及其电化学性能[J]. 复合材料学报, 2017, 34(9):1982-1988.

    ZHENG W Q, ZHENG Y Y, ZHANG X, et al. Synthesis and electrochemical properties of NiCo2O4 microsphere[J]. Acta Materiae Compositea Sinica,2017,34(9):1982-1988(in Chinese).
    [7] 孙银, 黄乃宝, 王东超, 等. 赝电容型超级电容器电极材料研究进展[J]. 电源技术, 2018, 45(5):747-750. doi: 10.3969/j.issn.1002-087X.2018.05.046

    SUN Y, HUANG N B, WANG D C, et al. Research progress of electrode materials for pseudosuper-capacitor[J]. Chinese Journal of Power Source,2018,45(5):747-750(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.05.046
    [8] YANG H M, LIU X, SONG X L. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr[J]. Transactions of Nonferrous Metals Society of China,2015,25(12):3987-3994.
    [9] EDDAOUDI M, LI H, YAGHI O M. Highly porous and stable metal-organic frameworks: Structure design and sorption properties[J]. Journal of the American Chemical Society,2000,122(7):1391-1397.
    [10] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [11] 张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-739.

    ZHANG Z, LIU H D, SONG C X, et al. Super-capactive performance of polyaniline coated CoFe Prussian blue analogue composite[J]. Acta Materiae Compositea Sinica,2020,37(3):731-739(in Chinese).
    [12] BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality inisoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society,2009,131(11):3875-3872.
    [13] ZHANG H, DERIA P, FARHA O K, et al. Ather-modynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks[J]. Energy & Environmental Science,2015,8(5):1501-1510.
    [14] 王亮, 田聃, 刘安琪, 等. GO@MIL-101的制备及其对水中Cr(Ⅵ)的去除[J]. 化工学报, 2017, 68(5):2105-2111.

    WANG L, TIAN D, LIU A Q, et al. Preparation of grapheme oxide@MIL-101 composite and its performance in Cr(Ⅵ) removal from aqueous solution[J]. CIESC Journal,2017,68(5):2105-2111(in Chinese).
    [15] HUANG Y K, HONG D Y, CHANG J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation[J]. Angewandte Chemie International Edition,2008,47(22):4144-4148.
    [16] CUI Y, YUE Y, QIAN G, et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews,2012,112(2):1126-1162.
    [17] LI H, HAN Y, SHAO Z. Water-stable Eu-MOF fluorescent sensors for trivalent matal ionsand nitrobenzene[J]. Dalton Transactions,2017,46(36):12201-12208.
    [18] 杨江峰, 元宁, 杜冰洁, 等. 双金属金属有机骨架材料的制备及性能研究进展[J]. 应用化学, 2018, 35(5):500-510. doi: 10.11944/j.issn.1000-0518.2018.05.170243

    YANG J F, YUAN N, DU B J, et al. Research progress in preparation technology and application of bimetal metal-organic frameworks materials[J]. Chinese Journal of Applied Chemistry,2018,35(5):500-510(in Chinese). doi: 10.11944/j.issn.1000-0518.2018.05.170243
    [19] ZHANG W, SHI Y, LI C, et al. Synthesis bimetallic MOFs MIL-100 (Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3[J]. Catalysis Letters,2016,146(10):1956-1964.
    [20] 欧阳金波, 那兵, 周利民, 等. 基于MOF结构的超级电容器电极材料研究进展[J]. 华东理工大学学报, 2018, 41(3):267-270.

    OUYANG J B, NA B, ZHOU L M, et al. MOF-based electrode materials for supercapacitor[J]. Journal of East China University of Technology,2018,41(3):267-270(in Chinese).
    [21] 付韫珒, 熊传溪. 双金属MOF基复合结构材料及其超级电容器性能[J]. 储能科学与技术, 2018, 7(3):495-501.

    FU Y J, XIONG C X. Double metal MOF-based composite structure and performance as super-capacitor electrode[J]. Energy Storage Science and Technology,2018,7(3):495-501(in Chinese).
    [22] ZHENG S, LI X, YAN B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials,2017,7(18):1602733.
    [23] QIU C, CAI F, WANG Y, et al. 2-Methylimidazole directed ambient synthesis of zinc-cobalt LDH nanosheets for efficient oxygen evolution reaction[J]. Journal of Colloid and Interface Science,2020,565:351-359.
    [24] 郭誉, 刘咏. Ni2+复合MOF-5材料的制备工艺及其电化学性能研究[J]. 粉末冶金工业, 2017, 27(2):51-57.

    GUO Y, LIU Y. Preparation and electrochemical performance of Ni2+-doped MOF-5 crystals[J]. Powder Metallurgy Industry,2017,27(2):51-57(in Chinese).
    [25] CAO F F, GAN M Y, MA L, et al. Hierarchical sheet-like Ni-Co layered double hydroxide derived from a MOF template for high-performance supercapacitors[J]. Synthetic Metals,2017,234:154-160.
    [26] WANG L, HAN YZ, FENG X, et al. Metal-organic frameworks for energy storage: Batteries and supercapacitors[J]. Coordination Chemistry Reviews,2016,307:361-381.
    [27] LI T, LI C, HU X, et al. Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenet-etracarboxylate metal-organic framework with high capacity[J]. RSC Advances,2016,6(66):61319-61324.
    [28] WEI J Z, WANG X L, SUN X J, et al. Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP[J]. Inorganic Chemistry,2018,57(7):3818-3824.
    [29] LI W J, LU J, GAO S Y, et al. Electrochemical preparation of metal-organic framework films for fastdetection of nitro explosives[J]. Journal of Materials Chemistry A,2014,2(45):19473.
    [30] LOU X, NING Y, LI C, et al. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms[J]. Science China Materials,2018,61(8):1040-1048.
    [31] DONG Y L, LU B, ZANG S, et al. Removal of methylene blue from coloured effluents by adsorption onto SBA-15[J]. Journal of Chemical Technology & Biotechnology,2011,86(4):616-619.
    [32] YANG J, ZHANG F, LU H, et al. Hollow Zn/Co-ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J]. Angewandte Chemie International Edition,2015,54(37):10889-10893.
  • 加载中
图(8)
计量
  • 文章访问数:  1815
  • HTML全文浏览量:  754
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 录用日期:  2020-08-18
  • 网络出版日期:  2020-08-31
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回