留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层损伤分析的碳纤维增强树脂复合材料-金属传动轴扭转性能

赵文辉 张伟东 段振云 杨帆 徐捷

赵文辉, 张伟东, 段振云, 等. 基于分层损伤分析的碳纤维增强树脂复合材料-金属传动轴扭转性能[J]. 复合材料学报, 2021, 38(5): 1476-1486. doi: 10.13801/j.cnki.fhclxb.20200723.005
引用本文: 赵文辉, 张伟东, 段振云, 等. 基于分层损伤分析的碳纤维增强树脂复合材料-金属传动轴扭转性能[J]. 复合材料学报, 2021, 38(5): 1476-1486. doi: 10.13801/j.cnki.fhclxb.20200723.005
ZHAO Wenhui, ZHANG Weidong, DUAN Zhenyun, et al. Torsion properties of carbon fiber reinforced polymer composite-metal transmission shaft based on delamination damage analysis[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1476-1486. doi: 10.13801/j.cnki.fhclxb.20200723.005
Citation: ZHAO Wenhui, ZHANG Weidong, DUAN Zhenyun, et al. Torsion properties of carbon fiber reinforced polymer composite-metal transmission shaft based on delamination damage analysis[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1476-1486. doi: 10.13801/j.cnki.fhclxb.20200723.005

基于分层损伤分析的碳纤维增强树脂复合材料-金属传动轴扭转性能

doi: 10.13801/j.cnki.fhclxb.20200723.005
基金项目: 国家自然科学基金 (51975386)
详细信息
    通讯作者:

    赵文辉,博士,副教授,博士生导师,研究方向为机械传动 E-mail:zhaowenhui@sut.edu.cn

  • 中图分类号: TB332

Torsion properties of carbon fiber reinforced polymer composite-metal transmission shaft based on delamination damage analysis

  • 摘要: 为提高油动四旋翼无人机载重能力,对碳纤维增强树脂复合材料(CFRP)-金属传动轴进行研究。CFRP-金属传动轴扭转强度影响因素为CFRP管制孔质量问题和传动过程中销钉对连接孔的挤压作用。研究导致CFRP管孔入出口分层损伤的力学行为,揭示了CFRP管制孔质量的影响机制并优化了制孔工艺。利用扭转试验对销接式CFRP-金属传动轴和附有内外衬套的混合式CFRP-金属传动轴进行对比分析。结果表明:在CFRP管内外附有铝合金衬套可有效减少制孔时的分层损伤,使孔入口质量提高了4.4%,孔出口质量高了8.3%,同时抑制销钉对连接孔的挤压作用。优化后的传动轴承受扭矩从499 N·m提高到952 N·m。

     

  • 图  1  钻削加工过程示意图

    Figure  1.  Schematic diagram of drilling process

    图  2  碳纤维增强树脂复合材料(CFRP)微元体受力分析示意图

    Figure  2.  Force analysis diagram of micro element body of carbon fiber reinforced polymer composite (CFRP)

    St—Supporting role of surrounding materials to carbon fiber based on unit length; Bd—Bonding role of interface to carbon fiber

    图  3  CFRP钻削过程中入出口情况

    Figure  3.  Entrance and exit during drilling of CFRP

    图  4  CFRP管制孔仿真模型

    Figure  4.  Simulation model of CFRP tube drilling hole

    图  5  CFRP损伤区域示意图

    Figure  5.  Schematic diagram of damage area of CFRP

    图  6  CFRP管直接钻削分层损伤情况

    Figure  6.  Delamination damage of direct drilling of CFRP tube

    图  7  附有衬套的CFRP管分层损伤情况

    Figure  7.  Delamination damage of CFRP tube with added bush

    图  8  CFRP管制孔加工方式

    Figure  8.  Processing method of CFRP tube drilling hole

    图  9  CFRP管孔入口俯视和截面形貌

    Figure  9.  Top view and section of CFRP tube hole entrance

    图  10  CFRP管孔入口损伤程度

    Figure  10.  Damage degree of CFRP tube hole entrance

    图  11  CFRP管孔入口俯视和截面形貌

    Figure  11.  Top view and section of CFRP tube hole exit

    图  12  CFRP管孔出口损伤程度

    Figure  12.  Damage degree of CFRP tube hole exit

    图  13  CFRP连接孔分层损伤

    Figure  13.  Delamination damage of connection hole of CFRP

    图  14  销接式CFRP-金属传动轴扭矩-时间曲线

    Figure  14.  Torque-time curve of pinned CFRP-metal drive shaft

    图  15  销接式CFRP-金属传动轴扭转失效

    Figure  15.  Torsion failure of pinned CFRP-metal drive shaft

    图  16  混合式CFRP-金属传动轴

    Figure  16.  Hybrid CFRP-metal drive shaft

    图  17  混合式CFRP-金属传动轴扭矩-时间曲线

    Figure  17.  Torque-time curve of hybrid CFRP-metal drive shaft

    表  1  T700 CFRP的材料参数

    Table  1.   Parameters of T700 CFRP

    E1/MPaE2=E3/MPaν12=ν13ν23G12=G13=G23/MPaXT/MPaXC/MPaYT/MPaYC/MPaS12=S13/MPaS23/MPaρ/(kg·m−3)
    115000 6430 0.34 0.28 6000 1500 700 30 100 60 30 1790
    Notes: ${E_i}$—Tensile moduli in different directions; ${G_{ij}}$—Shear moduli in plane in directions of $i$ and $j$;ν${}_{ij} $—Poisson’s ratios in plane in directions of $i$ and $j$; $i$, $j$—1, 2 or 3; ρ—Density.
    下载: 导出CSV
  • [1] 宿敬亚, 樊鹏辉, 蔡开元. 四旋翼飞行器的非线性PID姿态控制[J]. 北京航空航天大学学报, 2011, 37(9):1054-1058.

    SU Jingya, FAN Penghui, CAI Kaiyuan. Nonlinear PID attitude control of four-rotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2011,37(9):1054-1058(in Chinese).
    [2] OMID M, SALEH M. Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties[J]. ISA Transactions,2018,72:1-14.
    [3] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316.

    CHEN Yan, GE Ende, FU Yucan, et al. Research status and prospect of carbon fiber reinforced resin matrix composite pore making technology[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese).
    [4] 郭东明. 高性能精密制造[J]. 中国机械工程, 2008, 29(7):757-765. doi: 10.3321/j.issn:1004-132X.2008.07.001

    GUO Dongming. High-performance precision manufacturing[J]. China Mechanical Engineering,2008,29(7):757-765(in Chinese). doi: 10.3321/j.issn:1004-132X.2008.07.001
    [5] ABENA A, SOO S L, ESSA K. A finite element simulation for orthogonal cutting of UD-CFRP incorporating a novel fibre-matrix interface model[J]. Procedia CIRP,2015,31:539-544.
    [6] 殷俊伟, 贾振元, 王福吉, 等. 基于CFRP切削过程仿真的面下损伤形成分析[J]. 机械工程学报, 2016, 52(17):58-64. doi: 10.3901/JME.2016.17.058

    YIN Junwei, JIA Zhenyuan, WANG Fuji, et al. Analysis of surface damage formation based on CFRP cutting process simulation[J]. Journal of Mechanical Engineering,2016,52(17):58-64(in Chinese). doi: 10.3901/JME.2016.17.058
    [7] PHADNIS V A, MAKHDUM F, ROY A, et al. Drilling in carbon/epoxy composite: Experimental investigations and finite element implementation[J]. Composites Part A: Applied Science and Manufacturing,2013,47:41-51. doi: 10.1016/j.compositesa.2012.11.020
    [8] 齐振超. CFRP/金属叠层结构钻削力建模与分层控制方法研究[D]. 西安: 西北工业大学, 2015.

    QI Zhenchao. Drilling force modeling and delamination control for CFRP/metal laminated structures research on the method of preparation[D]. Xi’an: Northwest Polytechnical University, 2015(in Chinese).
    [9] 章伟, 黄威武, 屈植华, 等. 碳纤维复合材料-钛合金叠层板钻孔工艺研究[J]. 硬质合金, 2017, 34(1):21-26.

    ZHANG Wei, HUANG Weiwu, QU Zhihua, et al. Research on drilling technology of carbon fiber composites-titanium alloy laminate[J]. Cemented Carbide,2017,34(1):21-26(in Chinese).
    [10] RAHME P, LANDON Y, LACHAUD F, et al. Drilling of thick composite material with a small-diameter twist drill[J]. The International Journal of Advanced Manufacturing Technology,2015,76(9-12):1543-1553.
    [11] 王福吉, 成德, 赵猛, 等. 冷却空气流向对CFRP制孔刀具磨损及孔质量的影响[J]. 复合材料学报, 2019, 36(2):410-417.

    WANG Fuji, CHENG De, ZHAO Meng, et al. Effect of cooling air flow on wear and hole quality of CFRP drilling tools[J]. Acta Materiae Compositae Sinica,2019,36(2):410-417(in Chinese).
    [12] CAPELLO E. Workpiece damping and its effect on delamination damage in drilling thin composite laminates[J]. Journal of Materials Processing Technology,2004,148(2):186-195.
    [13] 房子昂, 赵丽滨, 刘丰睿, 等. 碳纤维/树脂复合材料多钉连接钉载系数测试方法[J]. 复合材料学报, 2019, 36(12):2795-2804.

    FANG Ziang, ZHAO Libin, LIU Fengrui, et al. Test method for nailing load coefficient of carbon fiber/resin composite multi-nailing joint[J]. Acta Materiae Compositae Sinica,2019,36(12):2795-2804(in Chinese).
    [14] 刘志明, 许昶. 碳纤维增强环氧树脂复合材料与铝板胶螺混合连接接头失效仿真[J]. 复合材料学报, 2019, 36(10):2308-2315.

    LIU Zhiming, XU Chang. Failure simulation of composite joint of carbon fiber reinforced epoxy resin composite and aluminum plate rubber screw[J]. Acta Materiae Compositae Sinica,2019,36(10):2308-2315(in Chinese).
    [15] KIM H S, LEE D G. Optimal design of the press fit joint for a hybrid aluminum/composite drive shaft[J]. Composite Structures,2004,70(1):33-47.
    [16] 石国成, 张锦光, 马祥禹, 等. 碳纤维轴管与金属轴头过盈连接研究[J]. 玻璃钢/复合材料, 2019(5):51-55.

    SHI Guocheng, ZHANG Jinguang, MA Xiangyu, et al. Study on interference connection between carbon fiber shaft tube and metal shaft head[J]. Glass Fiber Reinforced Plastics/Composites,2019(5):51-55(in Chinese).
    [17] 宿友亮. 切削CFRP中材料的力学行为研究[D]. 大连: 大连理工大学, 2017.

    SU Youliang. Mechanical behavior of materials in cutting CFRP[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [18] QI Z C, ZHANG K F, LI Y, et al. Critical thrust force predicting modeling for delamination-free drilling of metal-FRP stacks[J]. Composite Structures,2014,107:604-609.
    [19] 王福吉, 胡海波, 张博宇, 等. 复合材料成型分层缺陷在钻削横刃挤压阶段的扩展行为[J]. 机械工程学报, 2019, 55(11):197-204. doi: 10.3901/JME.2019.11.197

    WANG Fuji, HU Haibo, ZHANG Boyu, et al. Extended behavior of lamination defects in composite forming during drilling and transverse edge extrusion[J]. Journal of Mechanical Engineering,2019,55(11):197-204(in Chinese). doi: 10.3901/JME.2019.11.197
    [20] 张明辉, 周储伟, 鲁浩. 碳纤维复合材料单向板钻孔分层损伤的数值模拟[J]. 机械工程材料, 2019, 43(9):73-77.

    ZHANG Minghui, ZHOU Chuwei, LU Hao. Numerical simulation of delamination damage in borehole of carbon fiber composite plate[J]. Materials for Mechanical Engineering,2019,43(9):73-77(in Chinese).
    [21] 孙少周, 周光明, 王新峰. 含分层复合材料层板的压缩性能[J]. 材料科学与工程学报, 2011, 29(4):601-604.

    SUN Shaozhou, ZHOU Guangming, WANG Xinfeng. Compressive properties of laminated composite laminates[J]. Journal of Materials Science and Engineering,2011,29(4):601-604(in Chinese).
    [22] KHAN A A, BIMAL S, DEY K K, et al. Current conveyor based R- and C- multiplier circuits[J]. AEUE: International Journal of Electronics and Communications,2002,56(5):312-316.
    [23] 李桂玉. 叠层复合材料钻削加工缺陷产生机理及工艺参数优化[D]. 济南: 山东大学, 2011.

    LI Guiyu. Mechanism of defect generation and optimization of process parameters in drilling of laminated composite materials[D]. Jinan: Shandong University, 2011(in Chinese).
    [24] DAVIM J P, RUBIO J C, ABRAO A M. A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates[J]. Composites Science and Technology,2006,67(9):1939-1945.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  437
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-15
  • 网络出版日期:  2020-07-24
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回