留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制

何业茂 焦亚男 周庆 陈利 张典堂 谢军波 杨志

何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5): 1455-1467. doi: 10.13801/j.cnki.fhclxb.20200722.003
引用本文: 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5): 1455-1467. doi: 10.13801/j.cnki.fhclxb.20200722.003
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Ballistic performance of ultrahigh molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1455-1467. doi: 10.13801/j.cnki.fhclxb.20200722.003
Citation: HE Yemao, JIAO Yanan, ZHOU Qing, et al. Ballistic performance of ultrahigh molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1455-1467. doi: 10.13801/j.cnki.fhclxb.20200722.003

超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制

doi: 10.13801/j.cnki.fhclxb.20200722.003
详细信息
    通讯作者:

    焦亚男,博士,研究员,研究方向为三维新型立体织物整体近净成型工艺设计与理论 E-mail:Jiaoyn@tjpu.edu.cn

  • 中图分类号: TB332

Ballistic performance of ultrahigh molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism

  • 摘要: 选用碳纳米粒子(CNPs)原位改性和未改性的超高分子量聚乙烯(UHMWPE)纤维作为增强纤维,水性聚氨酯(WPU)作为树脂基体,采用缠绕-复合-热压工艺制备单向(UD)正交结构的UHMWPE纤维/WPU复合材料层压板。基于X射线计算机断层扫描(CT)技术,研究UHMWPE纤维/WPU复合材料层压板在7.62 mm×39 mm软钢芯弹以弹速为(720±10) m/s侵彻下的弹道响应。结果表明,UHMWPE纤维的CNPs原位改性提高了CNPs-UHMWPE纤维/WPU复合材料层压板抗单发侵彻性能,但会降低其抗多发打击的能力。对于未被穿透的层压板,其被侵彻过程可分为三个阶段,依次为剪切冲塞、断裂破坏和剩余子层的塑性变形,且每个阶段的厚度比依次为11.51%、44.40%和44.09%;层压板的分层响应主要发生在第二阶段,并集中在弹着点附近;每发弹丸侵彻导致层压板的破坏区域包含在以弹着点为圆心、直径约为70 mm的圆内。

     

  • 图  1  实验用UHMWPE纤维表面形貌:(a), (b), (c)未处理UHMWPE纤维表面微观形貌;(d), (e), (f) CNPs-UHMWPE纤维表面微观形貌

    Figure  1.  Surface morphologies of UHMWPE fiber used in experiment: (a), (b), (c) Surface micro-morphologies of pristine UHMWPE fiber; (d), (e), (f) Surface micro-morphologies of UHMWPE-CNPs fiber

    图  2  实验路线示意图: (a) UHMWPE纤维/水性聚氨酯(WPU)复合材料层压板制备工艺; (b) 弹道测试用装置; (c) CT扫描用装置;(d) 弹道侵彻后的层压板和弹丸形貌

    Figure  2.  Schematic of experimental route: (a) Preparation diagram of UHMWPE fiber/waterborne polyurethane (WPU) composite laminate; (b) Illustration of ballistic test setup; (c) Illustration of CT-scan setup; (d) Morphologies of post-impact laminate and post-impact projectile

    图  3  UHMWPE纤维/WPU复合材料层压板的防弹性能

    Figure  3.  Ballistic performance of UHMWPE fiber/WPU composite laminate

    图  4  UHMWPE纤维/WPU复合材料层压板的层间剪切强度

    Figure  4.  Interlaminar shear strength of UHMWPE fiber/WPU composite laminate

    图  5  基于CT构建的弹道侵彻后UHMWPE纤维/WPU复合材料层压板的3D示意图: (a)防弹面; (b)背面; (c)层压板内弹丸的相态; (d)第五发背面形貌

    Figure  5.  3D diagram of post-impact UHMWPE fiber/WPU composite laminate restructured by CT: (a) Strike face; (b) Rear face; (c) State of post-impact projectile; (d) Rear surface morphology of 5th shooting point

    图  6  弹道侵彻UHMWPE纤维/WPU复合材料层压板沿厚度方向的X射线内表面形貌演变(与防弹面不同距离的层压板内表面): (a) 1.01 mm;(b) 3.03 mm; (c) 6.06 mm; (d) 7.21 mm; (e) 8.08 mm; (f) 11.11 mm; (g) 14.28 mm; (h) 17.31 mm; (i) 20.49 mm; (j) 23.37 mm; (k) 26.40 mm; (l) 32.17 mm

    Figure  6.  X-ray surface morphology evolution of post-impact UHMWPE fiber/WPU composite laminate along the thickness direction (Internal surface of laminates away from strike surface): (a) 1.01 mm; (b) 3.03 mm; (c) 6.06 mm; (d) 7.21 mm; (e) 8.08 mm; (f) 11.11 mm; (g) 14.28 mm; (h) 17.31 mm; (i) 20.49 mm; (j) 23.37 mm; (k) 26.40 mm; (l) 32.17 mm

    图  7  弹道侵彻后UHMWPE纤维/WPU复合材料层压板的X射线横截面形貌演变

    Figure  7.  X-ray cross-section morphology evolution of post-impact UHMWPE fiber/WPU composite laminate

    图  8  弹道侵彻后UHMWPE纤维/WPU复合材料层压板的弹孔剖面形貌: (a)第3发弹孔剖面的3D示意图; (b)沿纤维0°方向的第3发弹孔剖面;(c)沿纤维90°方向的第3发弹孔剖面; (d)第4、5、6发分别沿纤维90°、90°、0°方向的弹孔剖面形貌

    Figure  8.  Bullet-hole profile morphologies of post-impact UHMWPE fiber/WPU composite laminate: (a) 3D diagram of 3rd bullet-hole profile morphology; (b) 3rd bullet-hole profile morphology along 0° of fiber; (c) 3rd bullet-hole profile morphology along 90° of fiber; (d) Bullet-hole profile morphology of 4th, 5th, and 6th along 90°, 90°, 0° of fiber, respectively

    表  1  实验用超高分子量聚乙烯(UHMWPE)纤维的物理性能

    Table  1.   Physical properties of ultrahigh molecular weight polyethylene (UHMWPE) fiber used in experiment

    Type of fiberLiner
    density/D
    Root
    number/(-)
    Longitudinal tensile mechanical properties
    (Before experiment/After experiment)
    us
    Strength/(cN·dtex−1)Modulus/(cN·dtex−1)Elongation/%
    UHMWPE fiber 741 240f 37.80/38.77 1138/1126 2.69/2.78 0.0976
    CNPs-UHMWPE fiber 733 240f 37.79/38.66 1178/1191 2.61/2.74 0.1187
    Notes: us—Surface sliding friction coefficient of UHMWPE fiber; CNPs—Carbon nanoparticles.
    下载: 导出CSV

    表  2  实验用UHMWPE纤维/WPU复合材料片材及其层压板的规格参数

    Table  2.   Specifications of sheet and its laminate of UHMWPE fiber/WPU composite in experiment

    Reinforced fiberSheetLaminate
    Areal density/(g·m−2)Fiber mass content/%Size/mmThickness/mmFiber content/%
    UHMWPE fiber 146.80 86.00±1.00 300×300 24.00±0.50 82.00±2.00
    CNPs-UHMWPE fiber 144.00
    下载: 导出CSV

    表  3  弹道测试实验参数

    Table  3.   Experimental parameters of ballistic test

    Reference
    standard
    Projectile
    size/mm
    Velocity/
    (m·s−1)
    Maximum
    BFS/mm
    RifeMaterial of
    projectile core
    Shooting
    angle
    Shooting
    state
    NIJ 0101.04[22] Ⅲ level 7.62×39 720±10 44 AK-47 Mild-steel (HV210) Normal impacting Clay backing
    Note: BFS—Back-face signature.
    下载: 导出CSV

    表  4  弹丸侵彻速度和UHMWPE纤维/WPU复合材料层压板弹道测试结果

    Table  4.   Impacting velocity of projectile and experimental results of UHMWPE fiber/WPU composite laminates

    Experimental laminateShooting sequenceProjectile velocity/(m·s−1)Post-impact stateResidual thickness/mmBFS/mm
    UHMWPE fiber/WPU
    composite laminate
    1st 728.597 NP 10.683 24.8
    2nd 727.537 NP 10.682 24.6
    3rd 721.501 NP 11.679 24.1
    4th 729.395 NP 7.616 24.7
    5th 725.163 NP 12.335 24.4
    6th 717.103 NP 9.880 23.9
    CNPs-UHMWPE fiber/
    WPU composite laminate
    1st 723.327 NP 11.636 24.2
    2nd 727.008 NP 8.676 23.7
    3rd 725.163 CP 0
    Notes: NP—Non-penetrating; CP—Complete penetrating.
    下载: 导出CSV

    表  5  弹道侵彻后UHMWPE纤维/WPU复合材料层压板的损伤参数

    Table  5.   Damage parameters of post-impact UHMWPE fiber/WPU composite laminate

    Shooting sequenceThickness ratio of each stage/%Plug height/mmMaximum damaged span/mmStrain of plastic deformation
    in third stage/%
    First stageSecond stageThird stageX-axisY-axis
    1st 12.50 40.29 47.21 3.90 72.32 55.91 1.82
    2nd 9.92 44.60 45.48 3.67 66.50 64.11 2.90
    3rd 13.43 35.43 51.14 3.54 63.24 74.34 3.04
    4th 9.16 59.00 31.84 3.39 87.26 69.74 5.01
    5th 11.57 39.53 48.90 3.54 61.27 79.42 6.42
    6th 12.50 47.51 39.99 3.10 60.16 77.28 6.50
    Avg. 11.51 44.40 44.09 3.52 68.46 70.13 4.28
    下载: 导出CSV
  • [1] LI X L, MU L, ZANG Y, et al. Study on performance degradation and failure analysis of machine gun barrel[J]. Defence Technology,2020,16(2):362-373. doi: 10.1016/j.dt.2019.05.008
    [2] SAPTARSHI K L, AMIT S, L S R. On performance of different material models in predicting response of ceramics under high velocity impact[J]. International Journal of Solids and Structures,2016,176-177:96-107.
    [3] ALEKSANDAR C, ALEKSANDAR S, ZIJAH B, et al. Fracture mechanics and fatigue crack propagation in armor steel welds[J]. Engineering Failure Analysis,2019,106:104155. doi: 10.1016/j.engfailanal.2019.104155
    [4] CROUCH I G. Body armour: New materials, new systems[J]. Defence Technology,2019,15(3):241-253. doi: 10.1016/j.dt.2019.02.002
    [5] MULAT A A, FRANCOIS B, PASCAL B, et al. Ballistic impact mechanisms: A review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures,2019,223:110966. doi: 10.1016/j.compstruct.2019.110966
    [6] TORSTEN R L, MICHAEL M, ULRICH H, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering,2018,147:47-55. doi: 10.1016/j.compositesb.2018.04.030
    [7] FAIZ Z, JAN S, ULRICH H, et al. Strategic positioning of carbon fiber layers in an UHMWPE ballistic hybrid composite panel[J]. International Journal of Impact Engineering,2019,129:119-127. doi: 10.1016/j.ijimpeng.2019.02.005
    [8] ZHANG D T, SUN Y, CHEN L, et al. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate[J]. Materials & Design,2014,54:315-322.
    [9] LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures,2017,179:245-257. doi: 10.1016/j.compstruct.2017.07.074
    [10] LIU B G, WADLEY H N G, DESHPANDE V S. Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles[J]. International Journal of Solids and Structures,2019,178-179:180-198. doi: 10.1016/j.ijsolstr.2019.07.001
    [11] LONG H N, SHANNON R, ADRIAN C O, et al. A penetration model for semi-infinite composite targets[J]. International Journal of Impact Engineering,2020,137:103438. doi: 10.1016/j.ijimpeng.2019.103438
    [12] WANG H, HAZELL P J, SHANKAR K, et al. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices[J]. Polymer Testing,2017,61:17-26. doi: 10.1016/j.polymertesting.2017.04.026
    [13] O'MASTA M R, DESHPANDE V S, WADLEY H N G. Mechanisms of projectile penetration in Dyneema® encapsulated aluminum structures[J]. International Journal of Impact Engineering,2014,74:16-35. doi: 10.1016/j.ijimpeng.2014.02.002
    [14] GREENHALGH E S, BLOODWORTH V M, IANNUCCI L, et al. Fractographic observations on Dyneema® composites under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing,2013,44:51-62. doi: 10.1016/j.compositesa.2012.08.012
    [15] KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates[J]. European Journal of Mechanics A: Solids,2013,42:35-53. doi: 10.1016/j.euromechsol.2013.04.002
    [16] KARTHIKEYAN K, RUSSELL B P. Polyethylene ballistic laminates: Failure mechanics and interface effect[J]. Materials & Design,2014,63:115-125.
    [17] LONG H N, SHANNON R, STEPHEN J. C, et al. The effect of target thickness on the ballistic performance of ultra-high molecular weight polyethylene composite[J]. International Journal of Impact Engineering,2015,75:174-183. doi: 10.1016/j.ijimpeng.2014.07.008
    [18] ZHU W, HUANG G Y, FENG S S, et al. Conical nosed projectile perforation of polyethylene reinforced cross-ply laminates: Effect of fiber lateral displacement[J]. International Journal of Impact Engineering, 2018, 118: 39-49.
    [19] SHI G J, CAO Z, YAN X T, et al. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance[J]. Materials Chemistry and Physics, 2019, 236: 121778.
    [20] 焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34(9):1960-1972.

    JIAO Yanan, HE Yemao, ZHOU Qing, et al. Influence factors on ballistic performance and failure mechanism of fiber reinforced resin matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(9):1960-1972(in Chinese).
    [21] LI M, LI W W, MA R L, et al. Long UHMWPE fibers reinforced rigid polyurethane composites: An investigation in mechanical properties[J]. European Polymer Journal, 2018, 105: 55-60.
    [22] National Institute of Standards and Technology. Ballistic resistance of personal body armor: NIJ standard 0101.04[S]. Washington: National Law Enforcement and Corrections Technology Center, 2004.
    [23] TRAVIS A B, MATTHEW W, JEFFREY S, et al. Interlaminar shear characterization of ultra-high molecular weight polyethylene (UHMWPE) composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2017,98:105-115. doi: 10.1016/j.compositesa.2017.03.018
    [24] JIN Y X, MAI R M, WU C, et al. Comparison of ballistic impact effects between biological tissue and gelatin[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,78:292-297. doi: 10.1016/j.jmbbm.2017.11.033
    [25] HAN R G, QU Y J, YAN W M, et al. Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets[J]. Defence Technology,2020,16(4):900-909.
    [26] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatin[J]. International Journal of Impact Engineering,2020,136:103417. doi: 10.1016/j.ijimpeng.2019.103417
    [27] CHEN L, ZHENG K, FANG Q. Effect of strain rate on the dynamic tensile behavior of UHMWPE fibre laminates[J]. Polymer Testing,2017,63:54-64. doi: 10.1016/j.polymertesting.2017.07.031
    [28] LIU B, KANDAN K, WADLEY H, et al. High strain rate compressive response of ultra-high molecular weight polyethylene fibre composites[J]. International Journal of Plasticity,2019,122:115-134. doi: 10.1016/j.ijplas.2019.04.005
    [29] ATTWOOD J, RUSSELL B, WADLEY H, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams[J]. International Journal of Impact Engineering,2016,93:153-165. doi: 10.1016/j.ijimpeng.2016.02.010
    [30] ATTWOOD J, KHADERI S, KARTHIKEYAN K, et al. The out-of-plane compressive response of Dyneema® composites[J]. Journal of the Mechanics and Physics of Solids,2014,70:200-226. doi: 10.1016/j.jmps.2014.05.017
    [31] LIU B, KANDAN K, WADELY H, et al. Deep penetration of ultra-high molecular weight polyethylene composites by a sharp-tipped punch[J]. Journal of the Mechanics and Physics of Solids,2019,123:80-102. doi: 10.1016/j.jmps.2018.06.001
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1772
  • HTML全文浏览量:  721
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 录用日期:  2020-07-05
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回