留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C/C复合材料销钉准静态和动态剪切性能

郭飞 李彦斌 张培伟 费庆国

郭飞, 李彦斌, 张培伟, 等. C/C复合材料销钉准静态和动态剪切性能[J]. 复合材料学报, 2021, 38(5): 1604-1610. doi: 10.13801/j.cnki.fhclxb.20200722.001
引用本文: 郭飞, 李彦斌, 张培伟, 等. C/C复合材料销钉准静态和动态剪切性能[J]. 复合材料学报, 2021, 38(5): 1604-1610. doi: 10.13801/j.cnki.fhclxb.20200722.001
GUO Fei, LI Yanbin, ZHANG Peiwei, et al. Quasi-static and dynamic shear properties of C/C composite pins[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1604-1610. doi: 10.13801/j.cnki.fhclxb.20200722.001
Citation: GUO Fei, LI Yanbin, ZHANG Peiwei, et al. Quasi-static and dynamic shear properties of C/C composite pins[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1604-1610. doi: 10.13801/j.cnki.fhclxb.20200722.001

C/C复合材料销钉准静态和动态剪切性能

doi: 10.13801/j.cnki.fhclxb.20200722.001
基金项目: 国家自然科学基金(11572086;11802059);江苏省自然科学基金(BK20170022;BK20170656)
详细信息
    通讯作者:

    费庆国,博士,教授,博士生导师,研究方向为复合材料参数修正及动响应预示 E-mail: qgfei@seu.edu.cn

  • 中图分类号: TB332

Quasi-static and dynamic shear properties of C/C composite pins

  • 摘要: 根据复合材料销钉剪切试验的需要,设计剪切试验装置。利用电子万能试验机和落槌冲击试验系统完成C/C复合材料销钉在准静态和动态加载工况下的面内剪切力学性能试验,并通过SEM试验系统分析其剪切失效模式和失效机制。结果表明:C/C复合材料销钉抗剪切强度具有明显的应变率效应,随着加载速率的增加,其抗剪切强度显著提高;C/C复合材料在不同加载速率下失效模式不同,准静态加载工况下纤维与基体严重剥离,纤维束丧失整体承载能力,其破坏过程表现出“伪塑性”失效特征;动态加载工况下纤维与基体未发生明显剥离,纤维束整体承载,其破坏过程表现为“脆性”失效特征。C/C复合材料在不同加载速率下剪切失效模式的不同可归结为内部缺陷扩展的应变率效应。

     

  • 图  1  C/C复合材料销钉剪切测试装置

    Figure  1.  Shear machine of C/C composite pins

    图  2  落槌冲击试验系统

    Figure  2.  Drop weight impact testing machine

    图  3  C/C复合材料销钉在不同加载速率下的宏观断面

    Figure  3.  Macro-scale morphologies of fracture surface of C/C composite pins under different loading rates

    图  4  C/C复合材料销钉在不同加载速率下拔出纤维束的SEM图像

    Figure  4.  SEM images of pull-out fiber bundles of C/C composite pins under different loading rates

    图  5  C/C复合材料销钉在不同加载速率下沿剪切面剪断的纤维束SEM图像

    Figure  5.  SEM images of shear failure fiber bundles of C/C composite pins on the shear plane under different loading rates

    图  6  C/C复合材料销钉的典型剪切载荷-位移曲线

    Figure  6.  Typical shear load-displacement curves of C/C composite pins

    图  7  C/C复合材料销钉在不同加载速率下的抗剪切强度

    Figure  7.  Shear strength of C/C composite pins under different loading rates

  • [1] HE Q C, LI H J, WANG C C, et al. Microstructure and ablation property of gradient ZrC-SiC modified C/C composites prepared by chemical liquid vapor deposition[J]. Ceramics International,2019,45(10):13283-13296. doi: 10.1016/j.ceramint.2019.04.018
    [2] 李贺军, 史小红, 沈庆凉, 等. 国内C/C复合材料研究进展[J]. 中国有色金属学报, 2019, 29(9):2142-2154.

    LI H J, SHI X H, SHEN Q L, et al. Research and development of C/C composites in China[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2142-2154(in Chinese).
    [3] HE Q C, LI H J, YIN X M, et al. Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C-ZrC-SiC composites fabricated by a multistep method of chemical liquid-vapor deposition[J]. Ceramics International,2019,45(16):20414-20426. doi: 10.1016/j.ceramint.2019.07.018
    [4] KOGO Y, KIKKAWA A, SAITO W, et al. Comparative study on tensile fracture behavior of monofilament and bundle C/C composites[J]. Composites Part A: Applied Science and Manufacturing,2006,37(12):2241-2247. doi: 10.1016/j.compositesa.2005.12.015
    [5] HATTA H, SUZUKI K, SHIGEI T, et al. Strength improvement by densification of C/C composites[J]. Carbon,2001,39(1):83-90. doi: 10.1016/S0008-6223(00)00083-X
    [6] ZHANG J, LUO R, XIANG Q, et al. Compressive fracture behavior of 3D needle-punched carbon/carbon composites[J]. Materials Science and Engineering A,2011,528(15):5002-5006. doi: 10.1016/j.msea.2011.03.055
    [7] LI D, YAO Q, JIANG N, et al. Bend properties and failure mechanism of a carbon/carbon composite with a 3D needle-punched preform at room and high temperatures[J]. New Carbon Materials,2016,31(4):437-444. doi: 10.1016/S1872-5805(16)60023-9
    [8] BRADLEY L R, BOWEN C R, MCENANEY B, et al. Shear properties of a carbon/carbon composite with non-woven felt and continuous fibre reinforcement layers[J]. Carbon,2007,45(11):2178-2187. doi: 10.1016/j.carbon.2007.06.072
    [9] 张伟, 庞宝君, 张泽华, 等. 航天器波纹防护屏高速撞击实验研究[J]. 宇航学报, 2000, 21(1):79-84. doi: 10.3321/j.issn:1000-1328.2000.01.013

    ZHANG W, PANG B J, ZHANG Z H, et al. High-velocity impact experimental investigation of spacecraft corrugated bumper shielding[J]. Journal of Astronautics,2000,21(1):79-84(in Chinese). doi: 10.3321/j.issn:1000-1328.2000.01.013
    [10] NARESH K, SHANKAR K, RAO B S, et al. Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites[J]. Composites Part B: Engineering,2016,100:125-135. doi: 10.1016/j.compositesb.2016.06.007
    [11] WANG M, ZHANG P W, FEI Q G. Transverse properties prediction of polymer composites at high strain rates based on unit cell model[J]. Journal of Aerospace Engineering,2017,31(2):04017102.
    [12] 吴以婷, 葛东云, 李辰. 湿热环境下 Carbon/Epoxy 复合材料层合板动态压缩性能[J]. 复合材料学报, 2016, 33(2):259-264.

    WU Y T, GE D Y, LI C. Dynamic compressive properties of Carbon/Epoxy laminates under hygrothermal environment[J]. Acta Materiae Compositae Sinica,2016,33(2):259-264(in Chinese).
    [13] GAO Y B, TANG T G, YI C H, et al. Study of static and dynamic behavior of TiB2-B4C composite[J]. Materials and Design,2016,92:814-822;. doi: 10.1016/j.matdes.2015.12.123
    [14] XIE W B, ZHANG W, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere[J]. Composites Part B: Engineering,2016,99:483-493. doi: 10.1016/j.compositesb.2016.06.020
    [15] HUANG W, ZHANG W, CHEN T, et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 63-74.
    [16] YUAN Q L, LI Y L, LI H J, et al. Quasi-static and dynamic compressive fracture behavior of carbon/carbon composites[J]. Carbon,2008,46(4):699-703. doi: 10.1016/j.carbon.2008.01.031
    [17] 袁秦鲁, 李玉龙, 李贺军, 等. C/C复合材料压缩破坏的应变率效应研究[J]. 无机材料学报, 2007, 22(2):311-314. doi: 10.3321/j.issn:1000-324X.2007.02.024

    YUAN Q L, LI Y L, LI H J, et al. Strain rate sensitivity of C/C composites under compression[J]. Journal of Inorganic Materials,2007,22(2):311-314(in Chinese). doi: 10.3321/j.issn:1000-324X.2007.02.024
    [18] LI D S, DUAN H W, WANG W, et al. Strain rate and temperature effect on mechanical properties and failure of 3D needle-punched carbon/carbon composites under dynamic loading[J]. Composite Structures,2017,172:229-241. doi: 10.1016/j.compstruct.2016.11.082
    [19] LAN F T, LI K Z, LI H J, et al. Joining of carbon/carbon composites for nuclear applications[J]. Journal of Materials Science,2009,44(14):3747-3750. doi: 10.1007/s10853-009-3501-0
    [20] ZHOU Y D, FEI Q G, TAO J Y. Profile design of loaded pins in composite single lap joints: From circular to non-circular[J]. Results in Physics,2016,6:471-480. doi: 10.1016/j.rinp.2016.07.010
    [21] ZHOU Y D, FEI Q G. Evaluation of opening-hole shapes for rivet connection of a composite plate[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science,2017,231(20):3810-3817. doi: 10.1177/0954406216652169
    [22] ZHOU Y D, HANG X C, WU S Q, et al. Frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites[J]. Acta Mechanica Solida Sinica,2017,30(2):165-173. doi: 10.1016/j.camss.2017.03.010
    [23] GUO F, FEI Q G, LI Y B, et al. Novel statistical analysis method for determining shear strength of C/C composite pin[J]. Ceramics International,2020,46(4):5262-5270. doi: 10.1016/j.ceramint.2019.10.275
    [24] 郭飞, 费庆国, 李彦斌, 等. 基于 Weibull 模型的 C/C 复合材料销钉剪切强度分布及本构关系[J]. 复合材料学报, 2019, 36(2):461-468.

    GUO F, FEI Q G, LI Y B, et al. Shear strength distribution and constitutive model of C/C composite pins based on Weibull model[J]. Acta Materiae Compositae Sinica,2019,36(2):461-468(in Chinese).
    [25] 王杰, 李克智, 郭领军, 等. 炭布叠层穿刺C/C复合材料螺栓连接件微观组织和力学性能[J]. 固体火箭技术, 2012, 35(2):248-252. doi: 10.3969/j.issn.1006-2793.2012.02.022

    WANG J, LI K Z, GUO L J, et al. Microstructure and mechanical properties of C/C composite bolts[J]. Journal of Solid Rocket Technology,2012,35(2):248-252(in Chinese). doi: 10.3969/j.issn.1006-2793.2012.02.022
    [26] ASTM International. Standard test method for shear testing of aluminum alloys: ASTM B769—11[S]. West Conshohocken: ASTM International, 2016.
  • 加载中
图(7)
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  323
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 录用日期:  2020-07-02
  • 网络出版日期:  2020-07-24
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回