留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无金属粘结剂WC硬质合金增强增韧的研究进展与展望

邹芹 李爽 李艳国 王明智 赵玉成

邹芹, 李爽, 李艳国, 等. 无金属粘结剂WC硬质合金增强增韧的研究进展与展望[J]. 复合材料学报, 2020, 37(10): 1-10 doi:  10.13801/j.cnki.fhclxb.20200701.001
引用本文: 邹芹, 李爽, 李艳国, 等. 无金属粘结剂WC硬质合金增强增韧的研究进展与展望[J]. 复合材料学报, 2020, 37(10): 1-10 doi:  10.13801/j.cnki.fhclxb.20200701.001
Qin ZOU, Shuang LI, Yanguo LI, Mingzhi WANG, Yucheng ZHAO. Research progress and prospect of strengthening and toughening WC cemented carbide without metal binder[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200701.001
Citation: Qin ZOU, Shuang LI, Yanguo LI, Mingzhi WANG, Yucheng ZHAO. Research progress and prospect of strengthening and toughening WC cemented carbide without metal binder[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200701.001

无金属粘结剂WC硬质合金增强增韧的研究进展与展望

doi: 10.13801/j.cnki.fhclxb.20200701.001
基金项目: 丹凤朝阳人才支持计划(丹人才办[2019]3号);新型硬质合金材料的研究(2018042)
详细信息
    通讯作者:

    李艳国,博士,副研究员,研究方向为陶瓷及其复合材料  E-mail:lyg@ysu.edu.cn

  • 中图分类号: TB331

Research progress and prospect of strengthening and toughening WC cemented carbide without metal binder

  • 摘要: 无金属粘结剂WC硬质合金(Binderless tungsten carbide, BTC)硬度高,具有良好的耐磨性、耐腐蚀性,被广泛应用于刀具、耐磨零件等领域,成为近年来硬质合金领域的研究热点。然而,由于没有添加金属粘结剂,其在烧结过程中易出现晶粒长大,致密化难度加大,对烧结方法烧结工艺的要求较高,韧性难与金属粘结剂WC硬质合金相媲美。因此,一些研究人员通过添加非金属粘结剂及调整烧结工艺等方法抑制晶粒长大、促进其致密化,有效改善了BTC材料的性能。本文对于应用金属氧化物、金属碳化物、碳材料及复合增强增韧来提高BTC性能的研究进行综述,介绍了添加剂的种类、增强增韧机制及可以改善材料性能的烧结方法及烧结工艺。
  • 图  1  1 600℃下烧结的Y2O3/WC和La2O3/WC的SEM图像:(a)Y2O3质量分数为0wt%;(b) Y2O3质量分数为1wt%;(c) La2O3质量分数为0wt%;(d) La2O3质量分数为1wt%[31-32]

    Figure  1.  SEM images of Y2O3/WC and La2O3/WC sintered at 1 600℃: (a)Mass fraction of Y2O3 was 0wt%; (b) Mass fraction of Y2O3 is 1wt%; (c)Mass fraction of Cr3C2 was 0wt%; (d) Mass fraction of Cr3C2 was 1wt%[31-32]

    图  2  SiC/WC的维氏硬度:(a)随VC、Cr3C2含量的变化;(b)随Mo2C含量的变化[44,46]

    Figure  2.  Hardness of WC-SiC composites: (a) changes with the contents of VC and Cr3C2; (b) changes with the content of Mo2C[44,46]

    图  3  WC-TiC-Al2O3陶瓷的TEM图像(a);位错形貌((b)、 (c)、 (d));电子衍射斑点((e)、(f)、(g));WC/Al2O3、WC/TiC界面的HRTEM图像((h)、(i))[56]

    Figure  3.  TEM images of WC-TiC-Al2O3 ceramics (a); dislocation morphology((b), (c), (d)); electron diffraction spots((e), (f), (g));HRTEM images of WC/Al2O3 and WC/TiC interface((h), (i)) [56]

    图  4  GPLs-Al2O3/WC复合材料的SEM图像:(a)GPLs质量分数为0.1wt%;(b)GPLs质量分数为0.3wt%[68]

    Figure  4.  SEM images of Al2O3-GPLs/WC: (a)Mass fraction of GPLs was 0.1wt%; (b)Mass fraction of GPLs was 0.3wt%[68]

    图  5  石墨烯片(GPLs)的质量分数对GPLs-Al2O3/WC材料性能的影响[68]

    Figure  5.  Influence of the amount of graphene sheets (GPLs) mass fraction on the material properties of GPLs-Al2O3/WC[68]

    图  6  BTC材料的性能分布图:(a)不同增强增韧相的BTC材料的性能分布;(b)不同阶段BTC材料的性能分布[10-12,16-23,27-29,31-33,37-46,49-57,63-64,68]

    Figure  6.  Properties distribution diagram of BTC materials :(a) properties distribution of BTC materials with different reinforcement and toughening phases;(b) performance distribution of BTC materials at different stages[10-12,16-23,27-29, 31-33, 37-46, 49-57, 63-64, 68]

  • [1] KRESSE T, MEINHAED D, BERNTHALER T, et al. Hardness of WC-Co hard metals: Preparation, quantitative microstructure analysis, structure-propery relationship and modelling[J]. International Journal of Refractory Metals and Hard Materials,2018,75:287-293. doi:  10.1016/j.ijrmhm.2018.05.003
    [2] WANG Z H, LIU Y W, LIU K, et al. Mechanical properties and microstructure of spark plasma sintered WC- 8wt. %Co-VC-cBN ultrafine grained cemented carbide[J]. Ceramics International,2019,45(17):23658-23665. doi:  10.1016/j.ceramint.2019.08.078
    [3] 郭涛, 郭世柏, 胡涛, 等. ((W, Mo) C-Al2O3 复合材料室温往复滑动摩擦磨损性能[J]. 金属热处理, 2019, 44(4):22-26.

    GUO T, GUO S B, HU T, et al. Ambient temperature reciprocated sliding wear behavior of (W, Mo)C-Al2O3 composite material[J]. Heart Treatment of Metals,2019,44(4):22-26(in Chinese).
    [4] SUN S K, ZHANG G J, WU W W, et al. Reactive spark plasma sintering of binderless WC ceramics at 1 500°C[J]. I Refractory Metals and Hard Materials,2014,43:42-45. doi:  10.1016/j.ijrmhm.2013.10.013
    [5] TSAI K M, HSIEH C Y, LU H H. Sintering of binderless tungsten carbide[J]. Ceramics International,2010,36(2):689-692. doi:  10.1016/j.ceramint.2009.10.017
    [6] 马世博, 邵明杰, 侯瑞东, 等. 碳化钨对真空熔覆铁基复合涂层结构和性能的影响[J]. 燕山大学学报, 2016, 40(2):116-122.

    MA S B, SHAO M J, HOU R D, et al. Influence on structure and properties of iron-based composite coating by vacuum cladding with WC[J]. Journal of Yanshan University,2016,40(2):116-122(in Chinese).
    [7] 马进, 马世博, 赵军. 碳化钨对截齿金属陶瓷涂层性能的影响[J]. 燕山大学学报, 2010, 34(1):34-38. doi:  10.3969/j.issn.1007-791X.2010.01.007

    MA J, MA S B, ZHAO J. Influence on properties of pick's ceramic-metal coating by WC[J]. Journal of Yanshan University,2010,34(1):34-38(in Chinese). doi:  10.3969/j.issn.1007-791X.2010.01.007
    [8] KORNAUS K, RACZKA M, GUBERNAT A. Pressureless sintering of binderless tungsten carbide[J]. European Ceramic Society,2017,37(15):4567-4576. doi:  10.1016/j.jeurceramsoc.2017.06.008
    [9] FOX R T, NILSSON R. Binderless tungsten carbide carbon control with pressureless sintering[J]. Refractory Metals and Hard Materials,2018,76:82-89. doi:  10.1016/j.ijrmhm.2018.05.020
    [10] El-ESKANDARANY M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation[J]. Alloys and Compounds,2005,391:228-235. doi:  10.1016/j.jallcom.2004.08.064
    [11] HUANG S, VANMENNSEL K, BIEST O V D, et al. Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites[J]. Materials Science and Engineering: A,2010,527(3):584-589. doi:  10.1016/j.msea.2009.08.035
    [12] QU H X, ZHU S Z, L1 Q, et al. Influence of sintering temperature and holding time on the densification, phase transformation, microstructure and properties of hot pressing WC-40vol. %Al2O3 composites[J]. Ceramics International,2012,38(2):1371-1380. doi:  10.1016/j.ceramint.2011.09.016
    [13] QU H X, ZHU S G, LI Q, et al. Microstructure and mechanical properties of hot-pressing sintered WC-xvol. % Al2O3 composites[J]. Materials Science and Engineering: A,2012,543:96-103. doi:  10.1016/j.msea.2012.02.053
    [14] QU H X, ZHU S G. Two step hot pressing sintering of dense fine grained WC-Al2O3 composites[J]. Ceramics International,2013,39(5):5415-5425. doi:  10.1016/j.ceramint.2012.12.049
    [15] CHEN W H, LIN H T, NAYAK P K, et al. Material properties of tungsten carbide-alumina composites fabricated by spark plasma sintering[J]. Ceramics International,2014,40(9):15007-15012. doi:  10.1016/j.ceramint.2014.06.102
    [16] CHEN W H, LIN H T, NAYAK P K, et al. Sintering behavior and mechanical properties of WC-Al2O3 composites prepared by spark plasma sintering (SPS)[J]. Refractory Metals and Hard Materials,2015,48:414-417. doi:  10.1016/j.ijrmhm.2014.10.016
    [17] OH S J, KIM B S, SHO I J. Mechanical properties and rapid consolidation of nanostructured WC and WC-Al2O3 composites by high-frequency induction-heated sintering[J]. Refractory Metals and Hard Materials,2016,58:189-195. doi:  10.1016/j.ijrmhm.2016.04.016
    [18] EI-ESKANDARANYM S. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature[J]. Alloys and Compounds,2000,296:175-182. doi:  10.1016/S0925-8388(99)00508-3
    [19] EI-ESKANDARANYM S, OMORI M, KONNO T J, et al. Synthesizing of nanocomposite WC/MgO powders by mechanical solid-state reduction and subsequent plasma-activated sintering[J]. Metallurgical and Materials Transactions: A,2001,32:157-164. doi:  10.1007/s11661-001-0111-0
    [20] ZHANG M L, ZHU S Z, JUN M, et al. Preparation of WC/MgO composite nanopowders by high-energy reactive ball milling and their plasma-activated sintering[J]. Powder Metallurgy and Metal Ceramics,2008,47(9):525-530.
    [21] 张梅琳, 朱世根, 赵明威. 烧结工艺对纳米WC/MgO复合材料性能的影响[J]. 热加工工艺, 2010, 39(10):106-109.

    ZHANG M L, ZHU S G, ZHAO M W. Effects of sintering process on properties of WC/MgO nano-composite[J]. Material & Heat Treatment,2010,39(10):106-109(in Chinese).
    [22] 张梅琳, 朱世根. 放电等离子烧结合成WC/MgO复合陶瓷断裂性能的研究[J]. 热加工工艺, 2012, 41(8):100-102.

    ZHANG M L, ZHU S G. Study on fracture toughness of WC/MgO composite prepared by spark plasma sintering[J]. Material & Heat Treatment,2012,41(8):100-102(in Chinese).
    [23] MA J, ZHU S G, OUYANG C X. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts[J]. European Ceramic Society,2011,31:1927-1935. doi:  10.1016/j.jeurceramsoc.2011.04.001
    [24] RADAJEWSKI M, SCHIMPF C, KRUGER L. Study of processing routes for WC-MgO composites with varying MgO contents consolidated by FAST/SPS[J]. European Ceramic Society,2017,37(5):2031-2037. doi:  10.1016/j.jeurceramsoc.2017.01.005
    [25] BONIECKI M, SADOWSKI T, GOLEBIEWSKI P, et al. Mechanical properties of alumina/zirconia composites[J]. Ceramics International,2020,46(1):1033-1039. doi:  10.1016/j.ceramint.2019.09.068
    [26] YU W J, ZHENG Y T, YU Y D. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2 (CeO2) solid solution powders consolidated by spark plasma sintering[J]. Science & Technology,2020,41:149-158.
    [27] BASU B, LEE J H, KIM D Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering[J]. American Ceramic Society,2004,87(2):317-319. doi:  10.1111/j.1551-2916.2004.00317.x
    [28] MALEK O, LAUWERS B, PERZ Y, et al. Processing of ultrafine ZrO2 toughened WC composites[J]. European Ceramic Society,2009,29:3371-3378. doi:  10.1016/j.jeurceramsoc.2009.07.013
    [29] ZHENG D, LI X Q, LI Y Y, et al. ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering[J]. Alloys and Compounds,2013,572:62-67. doi:  10.1016/j.jallcom.2013.03.259
    [30] 陈国清, 赵薇, 任媛媛, 等. 微波烧结WC-ZrO2复合材料的微观组织及增韧机理[J]. 现代技术陶瓷, 2018, 39(4):287-294.

    CHEN G Q, ZHAO W, REN Y Y, et al. Microstructure and toughening mechanism of WC-ZrO2 composites by microwave sintering[J]. Advanced Ceramics,2018,39(4):287-294(in Chinese).
    [31] WANG J F, ZUO D W, ZHU L, et al. Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering[J]. Refractory Metals & Hard Materials,2018,71:167-174.
    [32] REN X Y, PENG Z J, WANG C B, et al. Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC-La2O3 composites[J]. Ceramics International,2015,41:14811-14818. doi:  10.1016/j.ceramint.2015.08.002
    [33] XIA X J, LI X Q, LI J M, et al. Microstructure and characterization of WC-2.8wt. %Al2O3-6.8wt. %ZrO2 composites produced by spark plasma sintering[J]. Ceramics International,2016,42:14182-14188. doi:  10.1016/j.ceramint.2016.06.044
    [34] ZHENG D H, LI X Q, LI Y Y, et al. Zirconia-toughened WC with/without VC and Cr3C2[J]. Ceramics International,2014,40(1):2011-2016. doi:  10.1016/j.ceramint.2013.07.111
    [35] ZHENG D H, LI X Q, AI X, et al. Bulk WC-Al2O3 composites prepared by spark plasma sintering[J]. Refractory Metals and Hard Materials,2012,30:51-56. doi:  10.1016/j.ijrmhm.2011.07.003
    [36] KIM H C, KIM D K, KO I Y, et al. Sintering behavior and mechanical properties of binderless WC-TiC produced by pulsed current activated sintering[J]. Ceramic Processing Research,2007,8(2):91-97.
    [37] DASH T, NAYAK B B. Tungsten carbide-Titanium carbide composite preparation by arc plasma melting and its characterization[J]. Ceramics International,2019,45(4):4771-4780. doi:  10.1016/j.ceramint.2018.11.170
    [38] NINO A, IZU Y, SEKINE T, et al. Effects of TaC and TiC addition on the microstructures and mechanical properties of Binderless WC[J]. Refractory Metals and Hard Materials,2019,82:167-173. doi:  10.1016/j.ijrmhm.2019.04.012
    [39] KIM H C, PARK H K, JEONG I K, et al. Sintering of binderless WC-Mo2C hard materials by rapid sintering process[J]. Ceramics International,2008,34:1419-1423. doi:  10.1016/j.ceramint.2007.03.029
    [40] HUANG S G, VANMEENSEL K, BIEST O V D, et al. Binderless WC and WC-VC materials obtained by pulsed electric current sintering[J]. Refractory Metals & Hard Materials,2008,26:41-47.
    [41] POETSCHKE O, RICHTER V, HOLKE R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide[J]. Refractory Metals and Hard Materials,2012,31:218-223. doi:  10.1016/j.ijrmhm.2011.11.006
    [42] SUGIYAMA S, KUDO D, TAIMATSU H. Preparation of WC-SiC whisker composites by hot pressing and their mechanical properties[J]. Materials Transactions,2008,49(7):1644-1649. doi:  10.2320/matertrans.MRA2008019
    [43] NINO A, NAKAIBAYASHI Y, SUGIYAMA S, et al. Microstructure and mechanical properties of WC-SiC composites[J]. Materials Transactions,2011,52(8):1641-1645. doi:  10.2320/matertrans.M2011045
    [44] TAIMATSU H, SUGIYAMA S, KOMATSU M. Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC-SiC whisker ceramics[J]. Materials Transactions,2009,50(10):2035-2040.
    [45] NINO A, TAKAHASHI N, SUGIYAMA S, et al. Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC-SiC-Mo2C hard ceramics[J]. Refractory Metals and Hard Materials,2014,43:150-156. doi:  10.1016/j.ijrmhm.2013.11.016
    [46] NINO A, NAKAIBAYASHI Y, SUGIYAMA S, et al. Effect of Mo2C addition on the microstructures and mechanical properties of WC-SiC ceramics[J]. Refractory Metals and Hard Materials,2017,64:35-39. doi:  10.1016/j.ijrmhm.2016.12.018
    [47] ZHENG D, LI X Q, LI Y Y, et al. In-situ elongated β-Si3N4 grains toughened WC composites prepared by one/two-step spark plasma sintering[J]. Materials Science and Engineering: A,2013,561:445-451. doi:  10.1016/j.msea.2012.10.059
    [48] LI Y Y, ZHENG D, LI X Q, et al. Cr3C2 and VC doped WC-Si3N4 composites prepared by spark plasma sintering[J]. Refractory Metals and Hard Materials,2013,41:540-546. doi:  10.1016/j.ijrmhm.2013.07.004
    [49] OUYANG C X, ZHU S G, QU H X. VC and Cr3C2 doped WC-MgO compacts prepared by hot-pressing sintering[J]. Materials and Design,2012,40:550-555. doi:  10.1016/j.matdes.2012.04.030
    [50] OUYANG C X, ZHU S G, DONG W W. Microstructure and mechanical properties of hot-pressed WC-MgO composites with Cr3C2 or VC addition[J]. Refractory Metals and Hard Materials,2013,41:41-47. doi:  10.1016/j.ijrmhm.2013.01.015
    [51] FAN B, ZHU S, HAO D, et al. Influence of MgO whisker addition on microstructures and mechanical properties of WC-MgO composite[J]. Materials Chemistry and Physics,2019,238:121907. doi:  10.1016/j.matchemphys.2019.121907
    [52] DONG W W, ZHU S G, WANG Y, et al. Influence of VC and Cr3C2 as grain growth inhibitors on WC-Al2O3 composites prepared by hot press sintering[J]. Refractory Metals and Hard Materials,2014,45:223-229. doi:  10.1016/j.ijrmhm.2014.04.011
    [53] FENG W, ZHANG L T, LIU Y S, et al. The improvement in the mechanical and thermal properties of SiC/SiC compo-sites by introducing CNTs into the PyC interface[J]. Materials Science and Engineering: A,2015,637:123-129. doi:  10.1016/j.msea.2015.04.006
    [54] BAI T, XIE T. Fabrication and mechanical properties of WC-Al2O3 cemented carbide reinforced by CNTs[J]. Materials Chemistry and Physics,2017,201(1):113-119.
    [55] DONG W W, ZHU S G, BAI T, et al. Influence of Al2O3 whisker concentration on mechanical properties of WC-Al2O3 whisker composite[J]. Ceramics International,2015,41(10):13685-13691. doi:  10.1016/j.ceramint.2015.07.167
    [56] SUN J L, ZHAO J, NI X, et al. Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering[J]. European Ceramic Society,2018,38(9):3096-3103. doi:  10.1016/j.jeurceramsoc.2018.02.037
    [57] SUN J L, ZHAO J, CHEN M J, et al. Determination of microstructure and mechanical properties of VC/Cr3C2 reinforced functionally graded WC-TiC-Al2O3 micro-nano composite tool materials via two-step sintering[J]. Alloys and Compounds,2017,709:197-205. doi:  10.1016/j.jallcom.2017.03.137
    [58] SUN J L, ZHAO J, CHEN M J, et al. Multilayer graphene reinforced functionally graded tungsten carbide nano-composites[J]. Materials & Design,2017,134(15):171-180.
    [59] ESTILI E, KWON H S, KAWASAKI A, et al. Multiwalled carbon nanotube-reinforced ceramic matrix composites as a promising structural material[J]. Nuclear Materials,2010,398(1-3):244-245. doi:  10.1016/j.jnucmat.2009.10.039
    [60] WEI T, FAN Z J, LUO G H, et al. A new structure for multi-walled carbon nanotubes reinforced alumina nanocompo-site with high strength and toughness[J]. Materials Letters,2008,62(4-5):641-644. doi:  10.1016/j.matlet.2007.06.025
    [61] 郭长虹, 王晗, 高静, 等. SPS 烧结 CNTs/Cu 纳米复合材料的制备与性能[J]. 燕山大学学报, 2020, 44(1):1-10.

    GUO C H, WANG H, GAO J, et al. Preparation and properties of SPS CNTs/Cu nanocomposites[J]. Journal of Yanshan University,2020,44(1):1-10(in Chinese).
    [62] 郭铁波, 杨庆祥. 碳纳米管复合材料的研究应用现状与展望[J]. 燕山大学学报, 2006, 30(1):30-33.

    GUO T B, YANG Q X. Research application and prospect on carbon nanotubes composites[J]. Journal of Yanshan University,2006,30(1):30-33(in Chinese).
    [63] SHON I J, NA K I, KIM B R, et al. Mechanical properties and consolidation of nanostructured WC-CNT composites by high frequency induction heated sintering[J]. Reviews on Advanced Materials Science,2011,28:9-12.
    [64] CAO T, LI X Q, LI J M, et al. Effect of sintering temperature on phase constitution and mechanical properties of WC-1.0 wt% carbon nanotube composites[J]. Ceramics International,2017,44(1):164-169.
    [65] AHMAD I, YAZDANI B, ZHU Y. Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites[J]. Nanomaterials,2015,5(1):90-114. doi:  10.3390/nano5010090
    [66] DUSZA J, MORGIEL J, DUSZOVA A, et al. Microstructure and fracture toughness of Si3N4+graphene platelet composites[J]. European Ceramic Society,2012,32(12):3389-3397. doi:  10.1016/j.jeurceramsoc.2012.04.022
    [67] WUW W, GUI J Y, SAI W, et al. The reinforcing effect of graphene nano-platelets on the cryogenic mechanical properties of GNPs/Al2O3 composites[J]. Alloys and Compounds,2016,691:778-785.
    [68] ZHANG X X, ZHU S G, DING H, et al. Fabrication and properties of hot-pressing sintered WC-Al2O3 composites reinforced by graphene platelets[J]. Refractory Metals & Hard Materials,2019,82:81-90.
  • [1] 陈昊, 柴亚南, 迟坚, 陆磊.  复合材料机身曲板环向弯曲加载试验及失效机制, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20191221.001
    [2] 崔一纬, 魏亚.  水泥基复合材料热电效应综述:机制、材料、影响因素及应用, 复合材料学报. 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002
    [3] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [4] 顾功辉, 徐方, 周宇, 黄晓明, 李云凡.  基于矿物组分摩尔比的地质聚合物早期强度形成机制, 复合材料学报. 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004
    [5] 孙伟, 张炜, 郭剑, 贾丽芳, 李晓杰.  Ti-Cu层状复合材料静态载荷下变形与失效机制, 复合材料学报. 2020, 37(5): 1106-1113. doi: 10.13801/j.cnki.fhclxb.20190917.001
    [6] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [7] 栾建泽, 那景新, 谭伟, 慕文龙, 秦国锋.  服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测, 复合材料学报. 2020, 37(8): 1884-1893. doi: 10.13801/j.cnki.fhclxb.20191014.001
    [8] 胡江波, 薛向晨, 郑晓玲, 梁宪珠.  叠层滑移工艺对M21C层压板力学性能的影响, 复合材料学报. 2020, 37(5): 1184-1190. doi: 10.13801/j.cnki.fhclxb.20190816.001
    [9] 刘新, 陈铎, 何辉永, 孙涛, 武湛君.  热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料, 复合材料学报. 2020, 37(8): 1904-1910. doi: 10.13801/j.cnki.fhclxb.20191113.006
    [10] 荆蓉, 张锐涛, 孟雨辰, 王彦辉, 张兴刚, 赵玉, 张用兵.  连续玻纤增强聚丙烯热塑性复合材料拉挤成型中的工艺参数, 复合材料学报. 2020, 37(): 1-8.
    [11] 吴少惠, 马荣锋, 吴平伟, 戴金辉.  空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20200106.001
    [12] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
    [13] 高顺, 郭正虹.  纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制, 复合材料学报. 2020, 37(11): 1-11.
    [14] 方圆, 于峰, 张扬, 徐琳, 王旭良.  圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算, 复合材料学报. 2020, 37(5): 1211-1220. doi: 10.13801/j.cnki.fhclxb.20190916.001
    [15] 周浩然, 荆佳奇, 王德志, 范旭鹏, 袁镇, 赵立伟.  双马来酰亚胺工艺改性及性能, 复合材料学报. 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003
    [16] 陈丁丁, 朱萌, 胡其高, 王曼漪, 王蕊.  含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制, 复合材料学报. 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001
    [17] 靳文强, 赵建昌, 王琦, 郭乐乐, 聂丹.  冻融循环对CFRP-烧结粘土砖界面粘结性能影响, 复合材料学报. 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002
    [18] 杨贵荣, 王宁, 宋文明, 李亚敏, 马颖.  WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制, 复合材料学报. 2020, 37(10): 1-12. doi: 10.13801/j.cnki.fhclxb.20200203.001
    [19] 胥长龙, 卢德宏, 唐露, 李明宇.  复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响, 复合材料学报. 2020, 37(9): 2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002
    [20] 巩桂芬, 邢韵, 李泽, 辛浩, 曹景飞, 罗艳梅.  表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用, 复合材料学报. 2020, 37(6): 1334-1343. doi: 10.13801/j.cnki.fhclxb.20191104.001
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 录用日期:  2020-06-05
  • 网络出版日期:  2020-07-02

目录

    /

    返回文章
    返回