留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展

马玉钦 赵亚涛 许威 王杰 陈义 李开府

马玉钦, 赵亚涛, 许威, 等. 高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展[J]. 复合材料学报, 2020, 37(10): 1-9 doi:  10.13801/j.cnki.fhclxb.20200622.003
引用本文: 马玉钦, 赵亚涛, 许威, 等. 高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展[J]. 复合材料学报, 2020, 37(10): 1-9 doi:  10.13801/j.cnki.fhclxb.20200622.003
Yuqin MA, Yatao ZHAO, Wei XU, Jie WANG, Yi CHEN, Kaifu LI. Research status and development trend of high thermalconductivity graphene-carbon fiber hybrid reinforcedshape memory plastic composite[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200622.003
Citation: Yuqin MA, Yatao ZHAO, Wei XU, Jie WANG, Yi CHEN, Kaifu LI. Research status and development trend of high thermalconductivity graphene-carbon fiber hybrid reinforcedshape memory plastic composite[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200622.003

高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20200622.003
基金项目: 国家自然科学基金(51705389);教育部产学合作协同育人项目(201902004016);中国博士后科学基金(2017M613062);西安电子科技大学新实验开发和新实验设备研制项目(SY1954);西安电子科技大学研究生创新基金(5004-20109195867);西安电子科技大学研究生创新基金(5004-20109205867)。
详细信息
    通讯作者:

    马玉钦,博士,讲师,硕士生导师,研究方向为先进材料成型与制造技术  E-mail:yqma@xidian.edu.cn

  • 中图分类号: TB381

Research status and development trend of high thermalconductivity graphene-carbon fiber hybrid reinforcedshape memory plastic composite

  • 摘要: 热致形状记忆复合材料(SMPC)是一种能够对外界温度刺激做出响应的智能材料,与传统热致SMPC相比,高导热石墨烯(GR)-碳纤维(CF)混杂增强热致SMPC具有形状记忆性能优良、比强度高和导热性强等一系列优异性能,近年来受到人们广泛的关注并开展了相关研究。本文从形状记忆材料相关历史起源与应用入手,聚焦GR-CF混杂增强热致SMPC研究前沿问题,分别对该复合材料浸渗规律、成型工艺、形状记忆性能强化规律和弯曲失效规律四个方面的国内外研究现状进行了文献综述,并结合现有研究情况对其中出现的难题进行了探讨,最后指出了该热致SMPC未来有待深入研究的方向。
  • 图  1  形状记忆材料(SMM)典型应用件[7-8]

    Figure  1.  Typical applications of shape memory materials (SMM)[7-8]

    图  2  碳纤维(CF)增强热致形状记忆复合材料(SMPC)与石墨烯(GR)-CF混杂增强SMPC形状固定-回复对比

    Figure  2.  Comparison of carbon fiber (CF) enhanced shape memory plastic composite (SMPC) and graphene (GR)-CF hybrid enhanced SMPC shape fixing-recovery

    T—Temperature of material; Tg—Glass transition temperature of material

    图  3  GR-CF混杂增强SMPC浸渗过程示意图[11]

    Figure  3.  Schematic diagram of GR-CF hybrid enhanced SMPC infiltration process[11]

    图  4  不同浸渗压力下碳纤维增强环氧树脂基复合材料弯曲强度对比[11]

    Figure  4.  Comparison of bending strength of carbon fiber reinforced epoxy resin matrix composite under different infiltration pressure[11]

    图  5  真空浸渗热压制备SMPC流程图[28]

    Figure  5.  Flow chart of SMPC preparation by vacuum infiltration hot pressing process[28]

    图  6  真空浸渗热压SMPC试验系统结构[28]

    Figure  6.  Structure of SMPC test system by vacuum infiltration hot pressing[28]

    图  7  CF增强环氧树脂基复合材料微观组织图[28]

    Figure  7.  Microstructure diagrams of CF reinforced epoxy resin matrix composite[28]

    图  8  CF-玄武岩纤维(BF)混杂增强环氧树脂基复合材料三点弯曲有限元模型

    Figure  8.  Three-point bending finite element model of CF-basalt fiber (BF) hybrid reinforced epoxy resin composite

    图  9  CF-BF混杂增强环氧树脂基复合材料三点弯曲有限元仿真与试验结果趋势对比

    Figure  9.  Trend comparison of three point bending finite element simulation and test results for CF-BF hybrid reinforced epoxy resin matrix composites

    图  10  不同模压温度下碳纤维增强环氧树脂基SMPC形状固定率和回复率[36]

    Figure  10.  Carbon fiber reinforced epoxy resin matrix SMPC shape fixation rate and recovery rate at different molding temperatures[36]

    图  11  模压温度70℃时碳纤维增强环氧树脂基SMPC微观组织图[36]

    Figure  11.  Microstructure diagrams of carbon fiber reinforced epoxy resin matrix SMPC at mold pressing temperature of 70℃[36]

  • [1] ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of American Chemical Society,1932,54(10):3819-3833. doi:  10.1021/ja01349a004
    [2] GRENINGER A B, MOORADIAN V G. Strain transformation in metastable beta copper-zinc and copper-tin alloys[J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1938,128:337-368.
    [3] BUEHLER W J, GILFRICH J V, WILEY R C. Effect of low-temperature phase changes on the mechanical properties of Alloys near composition TiNi[J]. Journal of Applied Physics,1963,34(5):1475-1477. doi:  10.1063/1.1729603
    [4] JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials <italic>&</italic> Design,2014,56(14):1078-1113.
    [5] MAHYAR P S, MAHBOD A, MINA N, et al. Deep focusing on the role of microstructures in shape memory properties of polymer composites: A critical review[J]. European Polymer Journal,2019,117:280-303. doi:  10.1016/j.eurpolymj.2019.05.013
    [6] SOKOLOWSKI W, GHAFFARIAN R. Surface control of cold hibernated elastic memory self-deployable structure[C]. Proceedings of SPIE-The International Society for Optical Engineering, Smart Structures and Materials 2006: Smart Sensor Monitoring Systems and Applications, 2006.
    [7] LIN J K H, KNOLL C F, WILLEY C E. Shape memory rigidizable inflatable (RI) structures for large space systems applications[C]. Proceedings of 47th AIAA/ASME/ASCE-/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006.
    [8] LIU Y P, GALL K, DUNN M L, et al. Thermo-mechanics of shape memory polymers: Uniaxial experiments and constitutive modeling[J]. International Journal of Plasticity,2006,22(2):279-313. doi:  10.1016/j.ijplas.2005.03.004
    [9] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展[J]. 航空学报, 2014, 35(1):29-45.

    LENG Jinsong, SUN Jian, LIU Yanju. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):29-45(in Chinese).
    [10] 马玉钦, 任晓雨, 师阳, 等. 碳纤维复合材料真空浸渍与热压固化成型方: 中国, ZL 201810736127.8[P]. 2018-07-06.

    MA Yuqin, REN Xiaoyu, SHI Yang, et al. Vacuum impregnation and hot-pressing of carbon fiber composites: China, ZL 201810736127.8[P]. 2018-07-06(in Chinese).
    [11] MA Yuqin, ZHAO Yatao, ZHANG Yun, et al. Influence of infiltration pressure on the microstructure and properties of 2D-CFRP prepared by the vacuum infiltration hot pressing molding process[J]. Polymers,2019,11(12):2014. doi:  10.3390/polym11122014
    [12] MORTENSEN A, WONG T. Infiltration of fibrous preforms by a pure metal: Part III. capillary phenomena[J]. Metallurgical and Materials Transactions A,1990,21(8):2257-2263. doi:  10.1007/BF02647888
    [13] KAPTAY G. The threshold pressure of infiltration into fibrous preforms normal to the fibers’ axes[J]. Composites Science and Technology,2008,68:228-237. doi:  10.1016/j.compscitech.2007.04.023
    [14] SI Wei, ZHANG Yin, SHA Jingjie, et al. Mechanisms of pressure-induced water infiltration process through graphene nanopores[J]. Molecular simulation,2019,45(6):518-524. doi:  10.1080/08927022.2018.1559310
    [15] YU Tongfei, BAI Lifei, XU Zhijun, et al. Molecular simulation of permeation behaviour of ethanol/water molecules with single-layer graphene oxide membranes[J]. Molecular simulation,2018,44(10):840-849. doi:  10.1080/08927022.2018.1464161
    [16] LOUIS E, MIRALLES J A, MOLINA J M. High temperature infiltration at low over pressures: Darcy’s law, the slug-flow hypothesis and percolation[J]. Journal of Materials Science,2015,50(4):1655-1665. doi:  10.1007/s10853-014-8726-x
    [17] CENDER T A, PAVEL S, SURESH G A, et al. Resin film impregnation in fabric prepregs with dual length scale permeability[J]. Composites Part A: Applied Science and Manufacturing,2013,53:118-128. doi:  10.1016/j.compositesa.2013.05.013
    [18] FANG Liangchao, JIANG Jianjun, WANG Junbiao, et al. The effect of nesting on the in plane permeability of unidirectional fabrics in resin transfer molding[J]. Polymer Composites,2016,37(6):1695-1704. doi:  10.1002/pc.23342
    [19] ZHAO Qian, LIANG Yunhong, REN Lei, et al. Bionic intelligent hydrogel actuators with multimodal deformation and locomotion[J]. Nano Energy,2018,51:621-631. doi:  10.1016/j.nanoen.2018.07.025
    [20] NAM K, IM Y, PARK H J, et al. Photoacoustic effect on the electrical and mechanical properties of polymer-infiltrated carbon nanotube fiber/graphene oxide composites[J]. Composites Science and Technology,2017,153:136-144. doi:  10.1016/j.compscitech.2017.10.014
    [21] LU Haibao, YAO Yongtao, HUANG Weimin, et al. Noncovalently functionalized carbon fiber by grafted sele-assembled grapheme oxide and the synergistic effect on polymeric shape memory nanocomposites[J]. Composites Part B: Engineering,2014(67):290-295.
    [22] GAO Jifeng, CHEN Wujun, YU Bing, et al. Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite[J]. Composites Part B: Engineering,2019,159:336-345. doi:  10.1016/j.compositesb.2018.09.029
    [23] LIU Yayun, GUO Yufeng, ZHAO Jun, et al. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177:49-56. doi:  10.1016/j.compscitech.2019.04.014
    [24] GUO Jianming, WANG Zhenqing, TONG Liyong, et al. Shape memory and thermo-mechanical properties of shape memory polymer/carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing,2015,76:162-171. doi:  10.1016/j.compositesa.2015.05.026
    [25] 荆祥海. 展开结构用形状记忆环氧复合材料的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    JIN Xianghai. Study on properties and preparation of shape memory epoxy composites for deployment structure[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [26] LI F F, SCARPA F, LAN X Z, et al. Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2019,116:169-179. doi:  10.1016/j.compositesa.2018.10.037
    [27] 胡晓兰, 周川, 代少伟, 等. 氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能[J]. 复合材料学报, 2020, 37(5):1070-1080.

    HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica,2020,37(5):1070-1080(in Chinese).
    [28] MA Yuqin, WANG Jie, ZHAO Yatao, et al. A new vacuum pressure infiltration CFRP method and preparation experimental study of composite[J]. Polymers,2020,12(2):419. doi:  10.3390/polym12020419
    [29] PARK M, KIM Y, HWANG J O. Shape recovery characteristics of shape memory epoxy composites reinforced with chopped carbon fibers[J]. Carbon Letters,2019,29(3):219-224. doi:  10.1007/s42823-019-00031-1
    [30] KANG S, KANG T H, KIM B S. 2D reentrant micro-honeycomb structure of graphene-CNT in polyurethane: High stretchability, superior electrical/thermal conductivity, and improved shape memory properties[J]. Composites Part B: Engin- eering,2019,162:580-588. doi:  10.1016/j.compositesb.2019.01.004
    [31] FEJŐS M. Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure[J]. Express Polymer Letters,2013,7(6):528-34. doi:  10.3144/expresspolymlett.2013.49
    [32] NIDHIN D, ZHANG Xu, MANOJB. K, et al. Fabrication of surface modified graphene oxide/unsaturated polyester nanocomposites via in-situ polymerization: Comprehensive property enhancement[J]. Applied Surface Science,2020,502:144164. doi:  10.1016/j.apsusc.2019.144164
    [33] HAN S, CHAND A, ARABY S, et al. Thermally and electrically conductive multifunctional sensor based onepoxy/graphene composite[J]. Nanotechnology,2019,31(7). doi:  10.1088/1361-6528/ab5042
    [34] LIU Liu, XIAO Linghan, ZHANG Xiuping, et al. Improvement of the thermal conductivity and friction performance of poly (ether ether ketone) /carbon fiber laminates by addition of graphene[J]. RSC Advances,2015,5(71):2637-2645.
    [35] QU Y, WANG S, ZHOU D, et al. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives[J]. Renewable Energy,2020,146:57853-57859.
    [36] MA Yuqin, WANG Jie, LI Shuangshuang, et al. Effect of molding temperature on shape memory performance of SMPC[J]. Integrated Ferroelectrics,2020,209(1):30-39.
    [37] ZHAO Wei, LIU Liwu, LENG Jinsong. Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite[J]. Composites Part B: Engineering,2019,179:107455.
    [38] VALOROSI F, DE M E, BLANCO-VARELA T. Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits[J]. Compo-sites Science and Technology,2020,185:107848.
    [39] CHEN Yichao, DIMITRIS C L. A constitutive theory for shape memory polymers. Part I-Large deformations[J]. Journal of the Mechanics and Physics of Solids,2008,56(5):1752-1765. doi:  10.1016/j.jmps.2007.12.005
    [40] 邵义树. 形状记忆环氧树脂复合材料性能表征及其损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    SHAO Yishu. Characterization of shape memory epoxy resin composite and investigation of damage[D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
    [41] MOSHREFZADEH S H, SHOKRIEH M M. Strength calculation of graphene/polymer nanocomposites using the combined laminate analogy and progressive damage model[J]. Mechanics of Materials,2018,127:48-54. doi:  10.1016/j.mechmat.2018.09.002
    [42] MA Yuqin, QI Lehua, ZHANG Ting, et al. Study on defects of 2D-Cf/Al composites prepared by liquid-solid extrusion following vacuum infiltration technique[J]. International Journal of Advanced Manufacturing Technology,2017,88(1):89-96.
  • [1] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [2] 管宇鹏, 齐晓俊, 李帅, 贺莹莹, 刘红霞.  Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料, 复合材料学报. 2020, 37(8): 1875-1883. doi: 10.13801/j.cnki.fhclxb.20191226.001
    [3] 栾建泽, 那景新, 谭伟, 慕文龙, 秦国锋.  服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测, 复合材料学报. 2020, 37(8): 1884-1893. doi: 10.13801/j.cnki.fhclxb.20191014.001
    [4] 李果, 欧阳婷, 蒋朝, 陈云博.  碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征, 复合材料学报. 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002
    [5] 王新洲, 袁朱润, 黄雅茜, 李延军, 李永成, 许斌.  毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性, 复合材料学报. 2020, 37(): 1-9.
    [6] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [7] 曾伟, 丁一宁.  结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响, 复合材料学报. 2020, 37(9): 2303-2313. doi: 10.13801/j.cnki.fhclxb.20191213.002
    [8] 王庆轩, 丁一宁.  玄武岩纤维网格布增强混凝土板双向弯曲性能试验, 复合材料学报. 2020, 37(5): 1200-1210. doi: 10.13801/j.cnki.fhclxb.20190823.001
    [9] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [10] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报. 2020, 37(): 1-12.
    [11] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [12] 欧阳泽宇, 王珂珂, 饶琼, 张志龙, 扶碧波, 彭雄奇.  石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能, 复合材料学报. 2020, 37(): 1-10.
    [13] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [14] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [15] 陈萍, 赵月青, 陈菲, 张博明.  单向碳纤维/环氧树脂预浸料叠层的面内变形行为, 复合材料学报. 2020, 37(5): 1049-1055. doi: 10.13801/j.cnki.fhclxb.20190730.006
    [16] 路鹏程, 陈栋, 王志平.  碳纤维/聚苯硫醚热塑性复合材料电阻焊接工艺, 复合材料学报. 2020, 37(5): 1041-1048. doi: 10.13801/j.cnki.fhclxb.20190807.002
    [17] 荆蓉, 张锐涛, 孟雨辰, 王彦辉, 张兴刚, 赵玉, 张用兵.  连续玻纤增强聚丙烯热塑性复合材料拉挤成型中的工艺参数, 复合材料学报. 2020, 37(): 1-8.
    [18] 陈昊, 柴亚南, 迟坚, 陆磊.  复合材料机身曲板环向弯曲加载试验及失效机制, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20191221.001
    [19] 姜碧羽, 齐俊伟, 刘小林.  预浸料先进拉挤成型的固化传热过程数值模拟, 复合材料学报. 2020, 37(6): 1496-1504. doi: 10.13801/j.cnki.fhclxb.20190904.001
    [20] 吴少惠, 马荣锋, 吴平伟, 戴金辉.  空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20200106.001
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 录用日期:  2020-06-07
  • 网络出版日期:  2020-06-23

目录

    /

    返回文章
    返回