留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备

宋金鹏 高姣姣 吕明

宋金鹏, 高姣姣, 吕明. 颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10): 1-9 doi:  10.13801/j.cnki.fhclxb.20200617.003
引用本文: 宋金鹏, 高姣姣, 吕明. 颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10): 1-9 doi:  10.13801/j.cnki.fhclxb.20200617.003
Jinpeng SONG, Jiaojiao GAO, Ming LV. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200617.003
Citation: Jinpeng SONG, Jiaojiao GAO, Ming LV. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200617.003

颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备

doi: 10.13801/j.cnki.fhclxb.20200617.003
基金项目: 国家自然科学基金 (51875388;51405326)
详细信息
    通讯作者:

    宋金鹏,博士,副教授,硕士生导师,研究方向为高效加工及数控刀具(包括材料)技术 E-mail:songjinpeng@tyut.edu.cn

  • 中图分类号: TB333

Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure

  • 摘要: 为了制备具有良好综合力学性能的TiCN基金属陶瓷,研究了烧结温度对TiCN-HfN陶瓷微观结构和力学性能的影响,构建了颗粒弥散和核-壳共存的微观结构模型,揭示了材料的致密化机制、增硬机制、增韧补强机制。结果表明:在1 500℃下所制备的TiCN-HfN材料具有颗粒弥散与核-壳共存的微观结构,其中弥散的颗粒为HfN,核为TiCN,壳主要为(Ti, Hf, Mo)CN固溶体;材料具有较好的性能,其相对密度为99.7%、硬度为20.6 GPa、抗弯强度为1 682.5 MPa、断裂韧度为8.5 MPa·m1/2;其致密化机制主要为颗粒和金属液相填充到烧结颈实现致密化,增硬机制主要为致密化和颗粒钉扎强化增硬,增韧补强机制主要为颗粒弥散和颗粒钉扎增韧、骨架结构和颗粒钉扎增强。
  • 图  1  TiCN-HfN-Ni-Mo金属陶瓷的XRD图谱

    Figure  1.  XRD patterns of TiCN-HfN-Ni-Mo cermets

    图  2  4种烧结温度下TiCN-HfN-Ni-Mo金属陶瓷的抛光面形貌

    Figure  2.  Polished surface morphologies of TiCN-HfN-Ni-Mo cermets at 4 sintering temperatures

    图  3  A、B、C各点的EDS能谱

    Figure  3.  EDS spectra of point A, point B and point C

    图  4  4种烧结温度下TiCN-HfN-Ni-Mo金属陶瓷的断口形貌

    Figure  4.  Fracture morphologies of TiCN-HfN-Ni-Mo cermets at 4 sintering temperatures

    图  5  烧结温度与TiCN-HfN-Ni-Mo金属陶瓷力学性能间的关系

    Figure  5.  Relationship between sintering temperature and mechanical properties of TiCN-HfN-Ni-Mo cermets

    图  6  颗粒弥散与核-壳共存模型

    Figure  6.  A model of the coexistence microstructure of particle dispersion and core-rim structure

  • [1] 章晓波, 刘宁, 李勇. 碳纳米管增韧超细Ti(C,N)基金属陶瓷[J]. 复合材料学报, 2009, 26(1):91-95. doi:  10.3321/j.issn:1000-3851.2009.01.016

    ZHANG X B, LIU N, LI Y. Ultra-fine Ti(C,N) based cermets toughened by carbon nano-tubes[J]. Acta Materiae Compositae Sinica,2009,26(1):91-95(in Chinese). doi:  10.3321/j.issn:1000-3851.2009.01.016
    [2] LIN N, ZHAO L B, ZOU J C, et al. Improvement in densification process and properties of Ti(C,N)-based cermets with vanadium carbide addition[J]. Ceramics International,2019,45:2692-2700. doi:  10.1016/j.ceramint.2018.10.210
    [3] QI K F, YANG M, LI S H, et al. Microstructure and oxidation behavior of Ti(C,N)-based cermets with in situ synthesized Ni3Al phase[J]. International Journal of Refractory Metals & Hard Materials,2018,73:157-161.
    [4] LIU Y, HUANG C Z, LIU H L, et al. Mechanical properties and microstructure of Ti(C5N5)-TiB2-(W7Ti3)C composite cutting tool materials[J]. International Journal of Advanced Manufacturing Technology,2015,79:949-957. doi:  10.1007/s00170-015-6898-4
    [5] YIN Z B, YUAN J T, XU W W, et al. Improvement in microstructure and mechanical properties of Ti(C,N) cermet prepared by two-step spark plasma sintering[J]. Ceramics International,2019,45:752-758. doi:  10.1016/j.ceramint.2018.09.241
    [6] ZHOU H J, HUANG C Z, ZOU B, et al. Effects of sintering processes on the mechanical properties and microstructure of Ti(C,N)-based cermet cutting tool materials[J]. International Journal of Refractory Metals and Hard Materials,2014,47:71-79. doi:  10.1016/j.ijrmhm.2014.06.023
    [7] VISHWANATHA H M, ERAVELLY J, KUMAR C S, et al. Dispersion of ceramic nano-particles in the Al-Cu alloy matrix using two step ultrasonic casting and resultant strengthening[J]. Materials Science & Engineering A,2017,708:222-229.
    [8] 刘佳思, 纪箴, 贾成厂, 等. 纳米AlN颗粒弥散增强铜基复合材料的制备及性能研究[J]. 粉末冶金技术, 2017, 35(5):323-327.

    LIU S J, JI Z, JIA C C, et al. Preparation and properties of nano-AlN particle dispersion strengthened Cu-matrix composite[J]. Powder Metallurgy Technology,2017,35(5):323-327(in Chinese).
    [9] 张宏亮, 刘宁, 刘爱军, 等. WC含量对Ti(C,N)基金属陶瓷抗热震性能的影响[J]. 热处理, 2013, 28(4):17-21. doi:  10.3969/j.issn.1008-1690.2013.04.004

    ZHANG H L, LIU N, LIU A J, et al. Effect of WC content on thermal shock resistance of Ti(C,N)-based cermets[J]. Heat Treament,2013,28(4):17-21(in Chinese). doi:  10.3969/j.issn.1008-1690.2013.04.004
    [10] 于福文, 吴玉程, 陈俊凌, 等. 纳米TiC颗粒弥散增强超细晶钨基复合材料的组织结构与力学性能[J]. 功能材料, 2008, 1(39):139-142.

    YU F W, WU Y C, CHEN J L, et al. Microstructures and mechanical properties of nano-TiCp dispersion strengthened ultra-fine grained W matrix composite[J]. Journal of Functional Materials,2008,1(39):139-142(in Chinese).
    [11] GU M L, HUANG C Z, XIAO S R, et al. Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles[J]. Materials Science and Engineering A,2008,486:167-170. doi:  10.1016/j.msea.2007.09.040
    [12] XIA H Z, WEN X M, FENG Y, et al. Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy[J]. Solar Energy Materials & Solar Cells,2016,150:51-56.
    [13] LEANDRO G G, LUIS Z P, NELLY F R, et al. Influence of nitrogen flow rates on the structure, hardness, and electrical resistivity of HfN coatings by DC sputtering[J]. Journal of Materials Engineering and Performance,2015,24:1558-1564. doi:  10.1007/s11665-014-1377-x
    [14] ESCOBAR C, VILLARREAL M, CAICEDO J C, et al. Novel performance in physical and corrosion resistance HfN/VN coating system[J]. Surface & Coatings Technology,2013,221:182-190.
    [15] SONG J P, CAO L, JIANG L K, et al. Effect of HfN, HfC and HfB2 additives on phase transformation, microstructure and mechanical properties of ZrO2-based ceramics[J]. Ceramics International,2018,44:5371-5377. doi:  10.1016/j.ceramint.2017.12.164
    [16] AN J, SONG J P, LIANG G X, et al. Effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials[J]. Materials,2017,10(5):461. doi:  10.3390/ma10050461
    [17] WANG S H, ZHANG Y C, SUN Y, et al. Synthesis and characteristic of SiBCN/HfN ceramics with high temperature oxidation resistance[J]. Journal of Alloys and Compounds,2016,685:828-835. doi:  10.1016/j.jallcom.2016.06.250
    [18] VERMA V, MANOJ K B V. Processing of TiCN-WC-Ni/Co cermets via conventional and spark plasma sintering technique[J]. Transactions of the Indian Institute of Metals,2017,70(3):843-853. doi:  10.1007/s12666-017-1069-y
    [19] 陈敏, 肖玄, 张雪峰. TaC含量对TiCN基金属陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(2):270-275. doi:  10.3969/j.issn.1673-0224.2016.02.013

    CHEN M, XIAO X, ZHANG X F. Effect of TaC content on microstructure and properties of TiCN-based cermets[J]. Materials Science and Engineering of Powder Metallurgy,2016,21(2):270-275(in Chinese). doi:  10.3969/j.issn.1673-0224.2016.02.013
    [20] GAO J J, SONG J P, LV M, et al. Microstructure and mechanical properties of TiC0.7N0.3-HfC cermet tool materials[J]. Ceramics International,2018,44:17895-17904. doi:  10.1016/j.ceramint.2018.06.262
    [21] LI Y, LIU N, ZHANG X B, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets[J]. International Journal of Refractory Metals & Hard Materials,2008,26:190-196.
    [22] 李荣久. 陶瓷-金属复合材料[M]. 第2版, 北京冶金工业出版社, 2004.

    LI R J. Ceramic-metal composites[M]. 2rd Editon. Beijing: Metallurgy Industry Press, 2004 (in Chinese).
    [23] 刘兵, 张茜, 陈慧, 等. 烧结温度对 TiC0.7N0.3-WC-TaC-Mo-(Ni,Co)金属陶瓷材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5):710-716. doi:  10.3969/j.issn.1673-0224.2016.05.008

    LIU B, ZHANG Q, CHEN H, et al. Effect of sintering temperature on the properties and microstructure of TiC0.7N0.3-WC-TaC-Mo-(Ni,Co) cermet[J]. Materials Science and Engineering of Powder Metallurgy,2016,21(5):710-716(in Chinese). doi:  10.3969/j.issn.1673-0224.2016.05.008
    [24] 中国国家标准化管理委员会. 精细陶瓷弯曲强度试验方法: GB/T6569—2006[S]. 北京: 中国标准出版社, 2006.

    China State Bureau of Technological Supervision. Chinese National Standards-fine ceramics (advanced ceramics, advanced technical ceramics)-test method for flexural strength of monolithic ceramics at room temperature: GB/T6569—2006[S]. Beijing: Chinese Standard Publishing House, 2006(in Chinese).
    [25] 中国国家标准化管理委员会. 精细陶瓷室温硬度试验方法: GB/T16534—2009[S]. 北京: 中国标准出版社, 2009.

    China State Bureau of Technological Supervision. Chinese National Standards-fine ceramics (advanced ceramics, advanced technical ceramics)-test method for hardness of monolithic ceramics at room temperature: GB/T16534—2009[S]. Beijing: Chinese Standard Publishing House, 2009(in Chinese).
    [26] YIN Z B, YAN S Y, XU W W, et al. Microwave sintering of Ti(C,N) based cermet cutting tool material[J]. Ceramics International,2018,44(1):1034-1040. doi:  10.1016/j.ceramint.2017.10.041
    [27] XIONG H W, WEN Y, GAN X P, et al. Influence of coarse TiCN content on the morphology and mechanical properties of ultrafine TiCN based cermets[J]. Materials Science and Engineering A,2017,682:648-655. doi:  10.1016/j.msea.2016.11.085
    [28] ALVAREDO P, DIOS M, FERRARI B, et al. Understanding of wetting and solubility behavior of Fe binder on Ti(C,N) cermets[J]. Journal of Alloys and Compounds,2019,770:17-25. doi:  10.1016/j.jallcom.2018.07.243
    [29] LIU J B, GUO Z X, XIONG J, et al. Mo element-induced wear behavior evolution of self-lubricant Ti(C,N)-based cermets[J]. International Journal of Refractory Metals & Hard Materials,2019,80:299-304.
    [30] ZHANG H A, YAN J H, ZHANG X, et al. Properties of titanium carbonitride matrix cermets[J]. International Journal of Refractory Metals and Hard Materials,2006,24:236-239. doi:  10.1016/j.ijrmhm.2005.05.009
    [31] 汤振霄, 彭可, 向秋玲, 等. B4C颗粒对C/C-SiC复合材料微观结构与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(6):542-548. doi:  10.3969/j.issn.1673-0224.2019.06.009

    TANG Z X, PENG K, XIANG Q L, et al. Effect of B4C particles on microstructure and mechanical properties of C/C-SiC composites[J]. Materials Science and Engineering of Powder Metallurgy,2019,24(6):542-548(in Chinese). doi:  10.3969/j.issn.1673-0224.2019.06.009
    [32] 李斯, 张宇, 周颖, 等. 纳米Al2O3增韧MoSi2复合陶瓷的性能及机理研究[J]. 郑州大学学报(工学版), 2019, 40(6):62-67.

    LI S, ZHANG Y, ZHOU Y, et al. Properties and mechanism of nano-Al2O3 toughened MoSi2 composite[J]. Journal of Zhengzhou University (Engineering Science),2019,40(6):62-67(in Chinese).
  • [1] 曹金营, 曹贺, 欧阳求保, 张荻.  多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.002
    [2] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [3] 王怡然, 高义民, 李烨飞, 赵四勇, 李梦婷.  石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [4] 胡江波, 薛向晨, 郑晓玲, 梁宪珠.  叠层滑移工艺对M21C层压板力学性能的影响, 复合材料学报. 2020, 37(5): 1184-1190. doi: 10.13801/j.cnki.fhclxb.20190816.001
    [5] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
    [6] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [7] 黄鑫, 姜景山, 孙天洋, 蒋威.  玄武岩-碳纤维/矿渣混凝土力学性能正交试验, 复合材料学报. 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
    [8] 魏阿静, 李运涛, 马忠雷.  柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维, 复合材料学报. 2020, 37(8): 2045-2054. doi: 10.13801/j.cnki.fhclxb.20200103.002
    [9] 董晓星, 金明生, 王礼明, 康杰, 朱栋杰, 计时鸣.  用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
    [10] 杨涛, 刘润爱, 王文先, 连俊杰, 郑凡林, 陈洪胜.  热轧高含量B4C颗粒增强Al基复合材料的成形性能, 复合材料学报. 2020, 37(): 1-10.
    [11] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. 2020, 37(12): 1-18. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [12] 王彩萍, 张家华, 王晓杰.  各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能, 复合材料学报. 2020, 37(12): 1-9. doi: 10.13801/j.cnki.fhclxb.20200401.001
    [13] 薛彦庆, 郝启堂, 李新雷, 魏典, 李博, 余量量.  Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [14] 孙伟, 柏跃磊, 张强, 刘玉坤, 朱春城.  碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能, 复合材料学报. 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
    [15] 李传习, 李游, 高有为, 胡正, 刘一鸣.  纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响, 复合材料学报. 2020, 37(10): 1-17. doi: 10.13801/j.cnki.fhclxb.20200319.001
    [16] 丁梅杰, 张旭东, 魏智强, 黄尚攀, 姜金龙.  MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能, 复合材料学报. 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
    [17] 段雯雯, 王建军, 辛振祥, 王洪振.  环氧化天然橡胶改性石墨烯-炭黑/天然橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(7): 1667-1674. doi: 10.13801/j.cnki.fhclxb.20191125.002
    [18] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [19] 陈宇飞, 代国庆, 田麒源, 董磊, 崔巍巍, 滕成君.  Al2O3与两种热塑性树脂协同改性双马来酰亚胺基复合材料微观结构与性能, 复合材料学报. 2020, 37(6): 1260-1267. doi: 10.13801/j.cnki.fhclxb.20190925.001
    [20] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-06-06
  • 网络出版日期:  2020-06-17

目录

    /

    返回文章
    返回