留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负泊松比三明治结构填充泡沫混凝土的面内压缩性能

周宏元 贾昆程 王小娟 刘路

周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8): 2005-2014 doi:  10.13801/j.cnki.fhclxb.20191207.001
引用本文: 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8): 2005-2014 doi:  10.13801/j.cnki.fhclxb.20191207.001
Hongyuan ZHOU, Kuncheng JIA, Xiaojuan WANG, Lu LIU. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005-2014. doi: 10.13801/j.cnki.fhclxb.20191207.001
Citation: Hongyuan ZHOU, Kuncheng JIA, Xiaojuan WANG, Lu LIU. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005-2014. doi: 10.13801/j.cnki.fhclxb.20191207.001

负泊松比三明治结构填充泡沫混凝土的面内压缩性能

doi: 10.13801/j.cnki.fhclxb.20191207.001
基金项目: 国家自然科学基金(51808017; 51778028);北京市自然科学基金(8184063);北京市教委科技计划(KM201810005019)
详细信息
    通讯作者:

    王小娟,博士,讲师,硕士生导师,研究方向为建筑材料力学性能 E-mail:xiaojuanwang@bjut.edu.cn

  • 中图分类号: TB330.1;TB333

In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete

  • 摘要: 为改善负泊松比三明治结构的受压破坏模式且提高其缓冲吸能能力,提出一种填充泡沫混凝土的新型复合三明治结构。在负泊松比结构中填充不同密度(409 kg/m3、575 kg/m3、848 kg/m3、1 014 kg/m3)的泡沫混凝土得到负泊松比填充结构,并对无填充负泊松比结构、负泊松比填充结构和泡沫混凝土对照试块在准静态压缩下的破坏模式和吸能特性进行比较。根据荷载-位移关系和破坏模式得到以下结论:当填充物密度较小时,负泊松比填充结构能够将填充物的泊松比限制在较小的数值,胞元表现出内凹的变形模式,结构发生逐渐被压实的压缩破坏;当填充物密度较大时,结构发生“X”型剪切破坏,塑性铰区域和剪切带附近的胞壁发生断裂破坏;泡沫混凝土填充物的密度越大,填充结构的压实应变越小,吸收的能量越多,但当填充物密度超过一定值后,填充物密度的增加对负泊松比填充结构能量吸收能力的提升作用不再明显,结构的比吸能降低。
  • 图  1  负泊松比蜂窝芯层设计尺寸

    Figure  1.  Design size of the negative Poisson's ratio honeycomb core

    图  2  铝皮折叠

    Figure  2.  Aluminum sheet folding

    图  3  负泊松比结构

    Figure  3.  Negative Poisson's ratio structure

    图  4  试件浇筑

    Figure  4.  Specimen manufacturing11

    图  5  负泊松比填充泡沫混凝土结构

    Figure  5.  Auxetic aluminum structure filled with foam concrete

    图  6  无填充负泊松比结构准静态压缩时的变形模式

    Figure  6.  Deformation mode of hollow negative Poisson's ratio structure subjected to quasi-static compression

    图  7  填充低密度泡沫混凝土的负泊松比结构准静态压缩时的变形模式

    Figure  7.  Deformation mode of auxetic structure filled with low density foam concrete subjected to quasi-static compression

    图  8  填充高密度泡沫混凝土的负泊松比结构准静态压缩时的变形模式

    Figure  8.  Deformation mode of auxetic structure filled with high density foam concrete subjected to quasi-static compression

    图  9  无填充负泊松比结构胞元变形模式(ε=0.91)

    Figure  9.  Deformation mode of cells of hollow negative Poisson's ratio structure (ε=0.91)

    图  10  填充低密度泡沫混凝土负泊松比结构胞元变形模式

    Figure  10.  Deformation mode of cells of negative Poisson's ratio foam concrete composite structure filled with low density foam concrete

    图  11  填充高密度泡沫混凝土负泊松比结构胞元变形模式

    Figure  11.  Deformation mode of cells of negative Poisson's ratio foam concrete composite structure filled with high density foam concrete

    图  12  泡沫混凝土试件名义应力-名义应变关系曲线

    Figure  12.  Nominal stress-nominal strain relationships of foam concrete specimens

    图  13  填充物密度对泡沫混凝土试件能量吸收能力的影响

    Figure  13.  Effect of filler density on energy absorption capacity of foam concrete specimens

    ESA—Specific energy absorption

    表  1  负泊松比填充泡沫混凝土结构质量和几何参数

    Table  1.   Mass and geometric parameters of auxetic aluminum structures filled with foam concrete

    SampleDensity of foam concrete /(kg·m3)Density of sandwich structure /(kg·m3)Equivalent bottom area/mm2Height/mm
    A-0 219 6 642 124
    A-F400 409 566 6 561 125
    A-F600 575 780 6 723 125
    A-F800 848 1 059 7 047 127
    A-F1000 1 014 1 172 7 047 128
    下载: 导出CSV

    表  2  不同泡沫混凝土试件准静态压缩试验能量吸收指标

    Table  2.   Energy absorption of different foam concrete specimens subjected to quasi-static compression

    SampleDensification strainInitial peak force/kNMean crushing force/kNInitial peak strength/MPaMean crushing
    strength /MPa
    Energy absorption /JESA/
    (J·g−1)
    CFE
    A-0 0.545 0.422 0.525 0.064 0.079 46.740 0.259 1.244
    A-F400 0.460 4.198 4.553 0.640 0.694 303.390 0.653 1.085
    A-F600 0.401 13.782 12.538 2.050 1.865 579.680 0.884 0.910
    A-F800 0.372 25.444 18.061 3.611 2.563 989.930 1.044 0.710
    A-F1000 0.289 33.991 23.481 4.824 3.332 1 050.910 0.994 0.691
    F-400 0.600 3.374 2.504 0.337 0.250 150.230 0.367 0.742
    F-600 0.565 10.897 8.356 1.090 0.836 472.131 0.820 0.767
    F-800 0.526 22.723 14.500 2.272 1.450 762.652 0.898 0.638
    F-1000 0.494 46.472 20.751 4.647 2.075 1 025.100 1.011 0.447
    Notes: ESA—Specific energy absorption; CFE—Crushing force efficiency.
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi:  10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi:  10.3321/j.issn:1000-3851.2007.01.001
    [2] WANG Z Q, ZHOU Y B, WANG X H, et al. Multi-objective optimization design of a multi-layer honeycomb sandwich structure under blast loading[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering,2016,231(10):1449-1458.
    [3] 冀宾, 韩涵, 宋林郁, 等. 面内压缩超轻质点阵夹芯板的优化、试验与仿真[J]. 复合材料学报, 2019, 36(4):1045-1051.

    JI Bin, HAN Han, SONG Linyu, et al. Optimization, experiment and simulation of lightweight lattice sandwich plates under in-plane compression load[J]. Acta Materiae Compositae Sinica,2019,36(4):1045-1051(in Chinese).
    [4] 周昊, 郭锐, 刘荣忠, 等. 碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J]. 复合材料学报, 2019, 36(5):1226-1234.

    ZHOU Hao, GUO Rui, LIU Rongzhong, et al. Simulations on dynamic responses of carbon fiber reinforced polymer composite sandwich plates with square honeycomb cores subjected to water blast[J]. Acta Materiae Compositae Sinica,2019,36(5):1226-1234(in Chinese).
    [5] LI Z J, CHEN W S, HAO H. Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core[J]. International Journal of Mechanical Sciences,2018,145:83-95.
    [6] ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading[J]. International Journal of Impact Engineering,2018,122:265-275.
    [7] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio[J]. Computational Materials Science,2012,58:140-153.
    [8] LOVE A E H. A treatise on the mathematical theory of elasticity[M]. New York: Dover Publications, 1944.
    [9] FROST H J, ASHBY M F. Deformation-mechanism maps: The plasticity and creep of metals and ceramics[M]. New York: Pergamon Press, 1982.
    [10] XIAO D B, CHEN X Q, LI Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis[J]. Materials <italic>&</italic> Design,2019,176:107840.
    [11] HU L L, LUO Z R, ZHANG Z Y, et al. Mechanical property of reentrant anti-trichiral honeycombs under large deformation[J]. Composites Part B: Engineering,2018,163:107-120.
    [12] ZHANG J J, LU G X, RUAN D, et al. Tensile behavior of an auxetic structure: Analytical modeling and finite element analysis[J]. Composite Structures,2018,136:143-154.
    [13] AMRAN Y H M, FARZADNIA N, ABANG-ALI A A. Properties and applications of foamed concrete: A review[J]. Construction and Building Materials,2015,101:990-1005.
    [14] CHICA L, ALZATE A. Cellular concrete review: New trends for application in construction[J]. Construction and Building Materials,2019,200:637-647.
    [15] SU B Y, ZHOU Z W, LI Z Q, et al. Experimental investigation on the mechanical behavior of foamed concrete under uniaxial and triaxial loading[J]. Construction and Building Materials,2019,209:41-51.
    [16] FLORES-JOHNSON E A, LI Q M. Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces[J]. Composite Structures,2012,94(5):1555-1563.
    [17] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics,2004,71(3):386-401.
    [18] LIU Q, FU J, MA J, et al. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam[J]. Composites Part B: Engineering,2017,130:236-247.
    [19] 罗伟铭, 少卿, 孙建虎, 等. 蜂窝填砂复合夹芯结构的低速冲击响应试验研究[J]. 振动与冲击, 2018, 37(10):50-56.

    LUO Weiming, SHAO Qing, SUN Jianhu, et al. Experimental investigation on the low velocity impact responses of sand-filled aluminum honeycomb composite sandwich structures[J]. Journal of Vibration and Shock,2018,37(10):50-56(in Chinese).
    [20] MOZAFARI H, MOLATEFI H, CRUPI V, et al. In-plane compressive response and crushing of foam filled aluminum honeycombs[J]. Journal of Composite Materials,2014,49(26):3215-3228.
    [21] NIA A A, SADEGHI M Z. The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study[J]. Materials & Design,2010,31(3):1216-1230.
    [22] LIU J F, CHEN W S, HAO H, et al. Dynamic fracture of aramid paper honeycomb subjected to impact loading[J]. Composite Structures,2019,220:736-748.
    [23] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology,2002,18(5):480-488.
  • [1] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [2] 杜春燕, 黄树涛, 于晓琳, 王全兆, 赵晖.  SiCp/Al复合材料微弧氧化膜的组织结构及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191223.001
    [3] 齐佳旗, 段玥晨, 铁瑛, 侯玉亮, 李成.  结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190815.001
    [4] 武壮壮, 马国佳, 崔向中, 刘星.  微纳结构超疏水表面的浸润性及防冰性能, 复合材料学报.
    [5] 谢鹏, 刘问, 胡雨村, 孟鑫淼, 张涵政.  重组竹横向准脆性断裂的断裂参数, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191127.001
    [6] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [7] 杨蕊, 曹清华, 梅长彤, 洪枢, 徐真, 李建章.  高孔隙率三维结构木材构建功能复合材料的研究进展, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200324.001
    [8] 杨旭东, 安涛, 冯晓琳, 邹田春, 纵荣荣.  泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191206.002
    [9] 张扬, 曹玉贵, 胡志礼.  基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191223.002
    [10] 薛维培, 刘晓媛, 姚直书, 程桦, 李昊鹏.  不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200219.001
    [11] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [12] 商效瑀, 杨经纬, 李江山.  基于CT图像的再生混凝土细观破坏裂纹分形特征, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190917.002
    [13] 曾伟, 丁一宁.  荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191213.001
    [14] 曾伟, 丁一宁.  结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191213.002
    [15] 王腾蛟, 许金余, 朱从进, 任韦波.  灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200212.002
    [16] 王凯, 贺强.  聚甲基丙烯酰亚胺泡沫夹层结构全生命周期的关键技术研究进展, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200512.002
    [17] 张明艳, 杨振华, 吴子剑, 王登辉, 刘居, 杨镕琛.  新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190923.001
    [18] 李传习, 李游, 高有为, 胡正, 刘一鸣.  纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200319.001
    [19] 汪洋, 吴志斌, 刘富.  复合材料货舱地板立柱压溃响应试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200111.001
    [20] 史俊伟, 刘松平, 荀国立, 杨刚.  孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191008.001
  • 加载中
图(13) / 表ll (2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  39
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 录用日期:  2019-11-05
  • 网络出版日期:  2019-12-09
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回