留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能

乔雪涛 王朋 闫存富 许华威 张力斌 贾克 杨泽 吴隆

乔雪涛, 王朋, 闫存富, 等. 钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能[J]. 复合材料学报, 2020, 37(8): 1823-1831 doi:  10.13801/j.cnki.fhclxb.20191206.006
引用本文: 乔雪涛, 王朋, 闫存富, 等. 钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能[J]. 复合材料学报, 2020, 37(8): 1823-1831 doi:  10.13801/j.cnki.fhclxb.20191206.006
Xuetao QIAO, Peng WANG, Cunfu YAN, Huawei XU, Libin ZHANG, Ke JIA, Ze YANG, Long WU. Preparation and properties of steel-polypropylene fiber reinforced artificial granite composite[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
Citation: Xuetao QIAO, Peng WANG, Cunfu YAN, Huawei XU, Libin ZHANG, Ke JIA, Ze YANG, Long WU. Preparation and properties of steel-polypropylene fiber reinforced artificial granite composite[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006

钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20191206.006
基金项目: 河南省科技攻关项目(172102210586 );河南省科技攻关项目(182102210512 );河南省教育厅重点计划项目(13A460131);河南省教育厅重点计划项目(14B460003);郑州市科技攻关项目(153PKJGG132)
详细信息
    通讯作者:

    乔雪涛,博士,副教授,研究方向为精密制造技术与装备 E-mail:xtqiao@126.com

  • 中图分类号: TG584;TB332

Preparation and properties of steel-polypropylene fiber reinforced artificial granite composite

  • 摘要: 为深入研究钢-聚丙烯纤维增强人造花岗岩复合材料(钢-聚丙烯纤维/人造花岗岩)抗压、抗弯强度的影响因素,通过排水法实验研究了骨料堆积的空隙率,确定了骨料级配和实验指数q并对大量试件进行了抗压、抗弯强度测试,分析了钢-聚丙烯纤维/人造花岗岩复合材料各组分质量分数、骨料堆积空隙率等因素对钢-聚丙烯纤维/人造花岗岩复合材料抗压、抗弯强度的影响。实验结果表明:钢纤维与聚丙烯纤维能够明显增大钢-聚丙烯纤维/人造花岗岩复合材料的抗弯强度,随着钢-聚丙烯纤维质量分数的增加,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压和抗弯强度都逐渐增大;当钢纤维与聚丙烯纤维质量比为30∶1、钢-聚丙烯纤维质量分数为1.7wt%时,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压强度达到最大,当钢-聚丙烯纤维质量分数为1.9wt%时,钢-聚丙烯纤维/人造花岗岩试件的抗弯强度达到最大;黏结剂质量分数越接近骨料堆积空隙率,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压和抗弯强度越大,当骨料质量分数为80wt%、黏结剂质量分数为11wt%时,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压、抗弯强度同时达到最大。
  • 图  1  四种骨料堆积模型

    Figure  1.  Four aggregate aggregation models

    图  2  实验指数q为0.33和0.5时骨料堆积的最大密实度曲线

    Figure  2.  Curves of maximum compactness of aggregate accumulation with experimental indexes q of 0.33 and 0.5

    图  3  各级骨料在实验指数q为0.44时的质量分数

    Figure  3.  Mass fractions of aggregate with different sizes in the total mass of aggregate when the experimental index q is 0.44

    图  4  排水法实验检测骨料堆积空隙率

    Figure  4.  Test of aggregate void ratio by drainage method

    图  5  排水法实验流程

    Figure  5.  Flow chart of drainage experiment

    图  6  钢-聚丙烯纤维/人造花岗岩复合材料制备流程

    Figure  6.  Steel polypropylene fiber/artificial granite composite specimen making process

    图  7  钢-聚丙烯纤维/人造花岗岩复合材料各组分材料

    Figure  7.  Different component materials of steel polypropylene fiber/artificial granite composite

    图  8  钢-聚丙烯纤维/人造花岗岩复合材料成型试件

    Figure  8.  Formed steel polypropylene fiber/artificial granite composite specimens

    图  9  钢-聚丙烯纤维/人造花岗岩复合材料试件抗压强度测试

    Figure  9.  Compressive strength test of steel polypropylene fiber/artificial granite composite specimen

    图  10  钢-聚丙烯纤维/人造花岗岩复合材料试件抗弯强度测试

    Figure  10.  Bending strength test of steel polypropylene fiber/artificial granite composite specimen

    图  11  钢-聚丙烯纤维/人造花岗岩复合材料试件的抗弯测试加载方式

    Figure  11.  Loading mode of bending test of steel polypropylene fiber/artificial granite composite specimen

    图  12  钢-聚丙烯纤维/人造花岗岩复合材料试件在不同原料配比下的抗压强度

    Figure  12.  Compressive strengths of steel polypropylene fiber/artificial granite composite specimens with different proportions of raw materials

    图  13  钢-聚丙烯纤维/人造花岗岩复合材料试件在不同原料配比下的抗弯强度

    Figure  13.  Bending strengths of steel polypropylene fiber/artificial granite composite specimens with different proportions of raw materials

    图  14  钢纤维在树脂基体中形貌的SEM图像

    Figure  14.  SEM images of steel fiber morphology in resin matrix

    表  1  HORSFIELD最密填充数据

    Table  1.   HORSFIELD's closest filling data

    Filling stateParticle size of aggregateRelative number of aggregatesVoid fraction
    First fillingD10.2595
    Second fillingd=0.414D10.207
    Notes: D—Primary aggregate size; d—Diameter of the sieve hole.
    下载: 导出CSV

    表  2  不同骨料堆积模式对应的次级骨料粒径

    Table  2.   Secondary aggregate size corresponding to different aggregate accumulation models

    Aggregate accumulation modelThree-
    circle
    Two circles and one lineOne circle and two linesThree-
    line
    Secondary aggregate size0.15D0.2D0.24D0.29D
    下载: 导出CSV

    表  3  五种筛孔直径

    Table  3.   Five sieve hole diameters

    Controlling sizes of
    sieve hole
    d1/mmd2/mmd3/mmd4/mmd5/mm
    Size0.110.522.364.7510.00
    下载: 导出CSV

    表  4  两种纤维主要性能指标

    Table  4.   Main performance indicators of two fibers

    Fiber typeDiameter/
    μm
    Tensile strength/
    MPa
    Modulus of elasticity/
    GPa
    Density/
    (g·cm−3
    Steel fiber5003 0002107.8
    Polypropylene fiber357004.20.9
    下载: 导出CSV

    表  5  钢-聚丙烯纤维/人造花岗岩复合材料力学性能实验设计

    Table  5.   Design of mechanical property experiment of steel polypropylene fiber/artificial granite composites

    Serial
    number
    Fibre/wt%Filler/wt%Aggregate/wt%Binder/wt%
    1 1.3 7.7 83 8
    2 1.5 7.5 83 8
    3 1.7 7.3 83 8
    4 1.9 7.1 83 8
    5 2.1 6.9 83 8
    6 1.3 7.7 82 9
    7 1.5 7.5 82 9
    8 1.7 7.3 82 9
    9 1.9 7.1 82 9
    10 2.1 6.9 82 9
    11 1.3 7.7 81 10
    12 1.5 7.5 81 10
    13 1.7 7.3 81 10
    14 1.9 7.1 81 10
    15 2.1 6.9 81 10
    16 1.3 7.7 80 11
    17 1.5 7.5 80 11
    18 1.7 7.3 80 11
    19 1.9 7.1 80 11
    20 2.1 6.9 80 11
    21 1.3 7.7 79 12
    22 1.5 7.5 79 12
    23 1.7 7.3 79 12
    24 1.9 7.1 79 12
    25 2.1 6.9 79 12
    26 0 9.0 83 8
    27 0 9.0 82 9
    28 0 9.0 81 10
    29 0 9.0 80 11
    30 0 9.0 79 12
    下载: 导出CSV
  • [1] 刘敬福, 李赫亮, 牟新. 钢纤维增强聚合物树脂混凝土力学性能研究[J]. 机械工程材料, 2005(8):49-51. doi:  10.3969/j.issn.1000-3738.2005.08.017

    LIU Jingfu, LI Heliang, MOU Xin. Study on mechanical properties of steel fiber reinforced polymer resin concrete[J]. Mechanical Engineering Materials,2005(8):49-51(in Chinese). doi:  10.3969/j.issn.1000-3738.2005.08.017
    [2] 丁一宁, 朱昊, 李冬. 结构型钢纤维对单轴受压下混凝土渗透性及损伤的影响[J]. 复合材料学报, 2019, 36(12):2942-2949. doi:  10.13801/j.cnki.fhclxb.20190314.004

    DING Yining, ZHU Hao, LI Dong. Influence of structural steel fiber on permeability and damage of concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica,2019,36(12):2942-2949(in Chinese). doi:  10.13801/j.cnki.fhclxb.20190314.004
    [3] 王涛. 机床用碳纤维增强树脂矿物复合材料的制备与性能研究[D]. 济南: 山东大学, 2014.

    WANG Tao. Study on preparation and properties of carbon fiber reinforced resin mineral composites for machine tools[D]. Ji'nan: Shandong University, 2014(in Chinese).
    [4] 姜焕英, 王大鹏, 王志明, 等. 玻璃纤维增强热塑性树脂复合材料界面表征方法的研究[J]. 玻璃钢/复合材料, 2019(5):77-82. doi:  10.3969/j.issn.1003-0999.2019.05.013

    JIANG Huanying, WANG Dapeng, WANG Zhiming, et al. Study on the characterization of the interface of glass fiber reinforced thermoplastic resin composites[J]. FRP/Composites,2019(5):77-82(in Chinese). doi:  10.3969/j.issn.1003-0999.2019.05.013
    [5] 王泽宁. 钼纤维增强树脂矿物复合材料机理研究[D]. 济南: 山东大学, 2013.

    WANG Zening. Mechanism of molybdenum fiber reinforced resin mineral composites[D]. Ji'nan: Shandong U-niversity, 2013(in Chinese).
    [6] 于英华, 梁宇, 沈佳兴, 等. 玄武岩纤维增强树脂混凝土机床基础件结构设计及其性能仿真分析[J]. 机械设计, 2017, 34(1):71-75.

    YU Yinghua, LIANG Yu, SHEN Jiaxing, et al. Basalt fiber reinforced resin concrete machine tool foundation structure design and performance simulation analysis[J]. Mechanical Design,2017,34(1):71-75(in Chinese).
    [7] 杰德尔别克, 赵海涛, 巴合特别克, 等. 钢纤维和聚丙烯纤维高性能混凝土力学性能试验研究[J]. 新型建筑材料, 2018, 45(2):22-25. doi:  10.3969/j.issn.1001-702X.2018.02.007

    JIEDEER Bieke, ZHAO Haitao, BA Hetebieke, et al. Experimental study on mechanical properties of high performance steel fiber and polypropylene fiber concrete[J]. New Building Materials,2018,45(2):22-25(in Chinese). doi:  10.3969/j.issn.1001-702X.2018.02.007
    [8] 马芳武, 杨猛, 蒲永锋, 等. 混杂比对碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2019, 36(2):362-369.

    MA Fangwu, YANG Meng, PU Yongfeng, et al. Effect of hybrid ratio on bending properties of carbon fiber basalt fiber hybrid reinforced epoxy resin matrix composite[J]. Acta Materiae Compositae Sinica,2019,36(2):362-369(in Chinese).
    [9] 徐平, 沈佳兴, 于英华, 等. 偶联时间对玄武岩纤维树脂混凝土强度的影响[J]. 非金属矿, 2016, 39(3):47-49, 80. doi:  10.3969/j.issn.1000-8098.2016.03.015

    XU Ping, SHEN Jiaxing, YU Yinghua, et al. Effect of coupling time on the strength of basalt fiber resin concrete[J]. Non Metallic Minerals,2016,39(3):47-49, 80(in Chinese). doi:  10.3969/j.issn.1000-8098.2016.03.015
    [10] 朋改非, 牛旭婧, 赵怡琳. 异形钢纤维对超高性能混凝土增强增韧的影响[J]. 建筑材料学报, 2016, 19(6):1013-1018. doi:  10.3969/j.issn.1007-9629.2016.06.010

    PENG Gaifei, NIU Xujing, ZHAO Yilin. The influence of profiled steel fiber on the reinforcement and toughening of UHPC[J]. Journal of Building Materials,2016,19(6):1013-1018(in Chinese). doi:  10.3969/j.issn.1007-9629.2016.06.010
    [11] WASIM A M, IQBAL K, SHEHAB M. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete[J]. Construction and Building Materials,2018,168:556-569. doi:  10.1016/j.conbuildmat.2018.02.164
    [12] 丁一宁, 李林泽, 曾伟. 纤维对混凝土的损伤、裂缝曲折度及裂缝恢复的影响[J]. 复合材料学报, 2019, 36(10):2439-2447.

    DING Yining, LI Linze, ZENG Wei. Influence of fiber on damage, crack curvature and crack recovery of concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2439-2447(in Chinese).
    [13] HANNAWI K, BIAN H, PRINCE-AGBODJAN W, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Composites Part B: Engineering,2016,86:214-220. doi:  10.1016/j.compositesb.2015.09.059
    [14] 卢安琪, 祝烨然, 李克亮, 等. 聚丙烯纤维混凝土试验研究[J]. 水利水运工程学报, 2002(4):14-19. doi:  10.3969/j.issn.1009-640X.2002.04.003

    LU Anqi, ZHU Yeran, LI Keliang, et al. Experimental study on polypropylene fiber concrete[J]. Journal of Water Resources and Water Transportation Engineering,2002(4):14-19(in Chinese). doi:  10.3969/j.issn.1009-640X.2002.04.003
    [15] YUAN C, CHEN W, PHAM T M, et al. Bond behavior between basalt fibres reinforced polymer sheets and steel fibres reinforced concrete[J]. Engineering Structures,2018,176:812-824. doi:  10.1016/j.engstruct.2018.09.052
    [16] 刘世明, 刘永健, 李晓克, 等. 开孔钢板加劲的矩形钢管钢纤维高强混凝土柱轴压试验研究[J]. 建筑结构学报, 2018, 39(12):22-28.

    LIU Shiming, LIU Yongjian, LI Xiaoke, et al. Axial compression test of rectangular steel tube reinforced high-strength concrete columns strengthened with steel plate with openings[J]. Journal of Architectural Structures,2018,39(12):22-28(in Chinese).
    [17] 唐佳军, 裴长春. 撒布式混杂钢纤维再生混凝土力学性能[J]. 科学技术与工程, 2019, 19(18):265-270. doi:  10.3969/j.issn.1671-1815.2019.18.040

    TANG Jiajun, PEI Changchun. Mechanical properties of spread hybrid steel fiber recycled concrete[J]. Science and Technology and Engineering,2019,19(18):265-270(in Chinese). doi:  10.3969/j.issn.1671-1815.2019.18.040
    [18] ALBERTI M G, ENFEDAQUE A, GALVEZ J. C. Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size[J]. Engineering Fracture Mechanics,2016,154:225-244. doi:  10.1016/j.engfracmech.2015.12.032
    [19] 吴隆. 高速铣床树脂混凝土床身制造的研究[J]. 现代制造工程, 2004(2):77-78. doi:  10.3969/j.issn.1671-3133.2004.02.028

    WU Long. Research on manufacturing of resin concrete bed for high speed milling machine[J]. Modern Manufacturing Engineering,2004(2):77-78(in Chinese). doi:  10.3969/j.issn.1671-3133.2004.02.028
    [20] 李鹏, 季忠, 刘韧, 等. 矿物复合材料及其在机床上的应用[J]. 机床与液压, 2013, 41(19):159-163. doi:  10.3969/j.issn.1001-3881.2013.19.045

    LI Peng, JI Zhong, LIU Ren, et al. Mineral composite materials and their applications in machine tools[J]. Machine Tools and Hydraulic Pressures,2013,41(19):159-163(in Chinese). doi:  10.3969/j.issn.1001-3881.2013.19.045
    [21] 赵惠英, 于贺春, 赵则祥, 等. 机床基础件应用人造花岗岩的发展和现状[J]. 制造技术与机床, 2012(12):64-67. doi:  10.3969/j.issn.1005-2402.2012.12.019

    ZHAO Huiying, YU Hechun, ZHAO Zexiang, et al. The development and present situation of artificial granite applied to machine tool foundations[J]. Manufacturing Technology and Machine Tools,2012(12):64-67(in Chinese). doi:  10.3969/j.issn.1005-2402.2012.12.019
    [22] 许华威. 超精密外圆磨床床身用人造花岗岩材料试验研究[D]. 郑州: 中原工学院, 2017.

    XU Huawei. Experimental study on artificial granite material for ultra-precision cylindrical grinder bed[D]. Zhengzhou: Zhongyuan Institute of Technology, 2017(in Chinese).
    [23] 周仕学. 粉体工程导论[M]. 北京: 科学出版社, 2010.

    ZHOU Shixue. Introduction to powder engineering[M]. Beijing: Science Press, 2010(in Chinese).
    [24] 郝培文, 徐金枝, 周怀治. 应用贝雷法进行级配组成设计的关键技术[J]. 长安大学学报(自然科学版), 2004(6):1-6.

    HAO Peiwen, XU Jinzhi, ZHOU Huaizhi. Key technology of gradation composition design using Bayley method[J]. Journal of Chang'an University (Natural Science Edition),2004(6):1-6(in Chinese).
    [25] 中华人民共和国交通部. 公路工程集料试验规程: JTJ058—2000[S]. 北京: 人民交通出版社, 2000.

    Ministry of Communications of the People's Republic of China. Highway engineering aggregate test rules: JTJ058-2000[S]. Beijing: People's Communications Publishing House, 2000(in Chinese).
    [26] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: . GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction of the People's Republic of China. Standard for testing method of mechanical properties of ordinary concrete: GB/T 50081-2002[S]. Beijing: China Construction Industry Press, 2003(in Chinese).
  • [1] 李哲, 黄尧, 吴刚强, 杜宇, 范晓静, 吴大鸣.  基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190924.002
    [2] 肖沅谕, 高龙飞, 陈博, 李松.  石英纤维/聚酰亚胺复合材料的制备与性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200215.001
    [3] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [4] 郎风超, 朱静, 李云芳, 潘俊臣, 姜爱峰, 杨诗婷, 邢永明.  SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190712.001
    [5] 王怡然, 高义民, 李烨飞, 赵四勇, 李梦婷.  石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响, 复合材料学报.
    [6] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [7] 牟明明, 袁光明, 陈世尧.  纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190929.004
    [8] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报.
    [9] 董晓星, 金明生, 王礼明, 康杰, 朱栋杰, 计时鸣.  用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.003
    [10] 黄鑫, 姜景山, 孙天洋, 蒋威.  玄武岩-碳纤维/矿渣混凝土力学性能正交试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190930.001
    [11] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [12] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [13] 朵永超, 钱晓明, 赵宝宝, 吕淑扬.  PET-PA6中空桔瓣超细纤维/Lyocell纤维非织造复合材料的制备与性能, 复合材料学报.
    [14] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [15] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [16] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [17] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [18] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [19] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [20] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191226.002
  • 加载中
图(14) / 表ll (5)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  32
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-11-05
  • 网络出版日期:  2019-12-07
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回