留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矿物组分摩尔比的地质聚合物早期强度形成机制

顾功辉 徐方 周宇 黄晓明 李云凡

顾功辉, 徐方, 周宇, 等. 基于矿物组分摩尔比的地质聚合物早期强度形成机制[J]. 复合材料学报, 2020, 37(8): 2036-2044 doi:  10.13801/j.cnki.fhclxb.20191206.004
引用本文: 顾功辉, 徐方, 周宇, 等. 基于矿物组分摩尔比的地质聚合物早期强度形成机制[J]. 复合材料学报, 2020, 37(8): 2036-2044 doi:  10.13801/j.cnki.fhclxb.20191206.004
Gonghui GU, Fang XU, Yu ZHOU, Xiaoming HUANG, Yunfan LI. Formation mechanism of early strength in geopolymer based on molar ratio of mineral components[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004
Citation: Gonghui GU, Fang XU, Yu ZHOU, Xiaoming HUANG, Yunfan LI. Formation mechanism of early strength in geopolymer based on molar ratio of mineral components[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004

基于矿物组分摩尔比的地质聚合物早期强度形成机制

doi: 10.13801/j.cnki.fhclxb.20191206.004
基金项目: 中国博士后科学基金面上项目(2018M640444);湖北省交通运输厅科技项目(2017-538-1-1);长安大学重点科研平台开放基金(300102219521);中国地质大学(武汉)大学生自主创新资助计划启航项目(1810491Z3);国家级大学生创新训练项目(201810491055)
详细信息
    通讯作者:

    徐方,博士,副教授,研究方向为高性能混凝土结构材料 E-mail:xufang@cug.edu.cn

  • 中图分类号: TB332;TU52

Formation mechanism of early strength in geopolymer based on molar ratio of mineral components

  • 摘要: 通过调控地质聚合物内部的矿物组分SiO2/Al2O3、CaO/Al2O3与Na2O/Al2O3等的摩尔比,采用XRD与SEM观察地质聚合物反应程度与CaSiO3水化反应程度的复合变化规律,探究了地质聚合物反应与CaSiO3水化反应的复合协同作用效果。进一步揭示了地质聚合物的早期强度形成机制。研究表明:地质聚合物反应产物中含有一定量的石英组分,其物理性质和化学性质均十分稳定,强度较高。CaSiO3水化反应产物以水化CaSiO3为主,其内部结构疏松。随着SiO2/Al2O3和CaO/Al2O3摩尔比的增加,地质聚合物反应程度先增加后减少,CaSiO3水化反应程度先增加后趋于稳定且大于地质聚合物反应程度。当SiO2/Al2O3摩尔比为3.8、CaO/Al2O3摩尔比为2.750时,地质聚合物反应与CaSiO3水化反应的复合协同效果最佳,此时地质聚合物内石英质量分数约为66wt%,水化CaSiO3质量分数约为24wt%,力学性能良好。
  • 图  1  地质聚合物净浆制备流程图

    Figure  1.  Preparation procedure of geopolymer paste

    图  2  不同矿物组分摩尔比下地质聚合物抗压强度发展趋势

    Figure  2.  Development trend of compressive strengths of geopolymers under different mineral molar ratios

    图  3  不同矿物组分摩尔比地质聚合物抗折强度发展趋势

    Figure  3.  Development trend of flexural strengths of geopolymers under different mineral molar ratios

    图  4  地质聚合物XRD图谱

    Figure  4.  XRD spectra of geopolymers

    图  5  不同矿物组分摩尔比下地质聚合物微观形貌

    Figure  5.  Micro-morphologies of geopolymers with different mineral molar ratios

    图  6  地质聚合物试样SY7的SEM图像(a)和能谱图((b)~(d))

    Figure  6.  SEM image(a) and energy spectra((b)-(d)) of geopolymer specimen SY7

    表  1  粉煤灰和高炉矿渣粉(GGBFS)的化学组成

    Table  1.   Chemical compositions of fly ash and ground granulated blast furnace slag(GGBFS) wt%

    MaterialSiO2Al2O3Fe2O3MgOCaONa2OK2OMnOTiO2Others
    Fly ash 42.34 25.84 5.46 1.17 6.66 1.13 1.05 0.11 1.07 15.17
    GGBFS 29.73 13.58 1.01 6.56 36.39 0.28 0.55 0.09 0.6 11.21
    下载: 导出CSV

    表  2  水玻璃参数

    Table  2.   Properties of water glass

    ColorModulusBaume degree/°BéNa2O/wt%SiO2/wt%
    Transparent3.2439.59.2529
    下载: 导出CSV

    表  3  地质聚合物净浆配合比设计

    Table  3.   Mix design of geopolymer paste

    MixMole ratioWater-solid mass ratioFly ash/gGGBFS/gComplex alkali activator/g
    SiO2/Al2O3CaO/Al2O3Na2O/Al2O3
    SY1 3.4 0.866 0.442 0.3 369.7 69.4 135.8
    SY2 3.5 1.337 0.442 0.3 302.6 140.9 126
    SY3 3.6 1.808 0.442 0.3 244.6 202.7 117.4
    SY4 3.7 2.279 0.442 0.3 194 256.7 110
    SY5 3.8 2.750 0.442 0.3 149.4 304.2 103.4
    SY6 3.9 3.221 0.442 0.3 109.8 346.4 97.6
    SY7 4.0 3.693 0.442 0.3 74.4 384.1 92.4
    下载: 导出CSV

    表  4  不同矿物成分摩尔比地质聚合物抗压强度

    Table  4.   Compressive strengths of geopolymers under different mineral molar ratios

    MixMole ratioWater-solid mass ratioCompressive strength/ MPa
    SiO2/Al2O3CaO/Al2O33 d7 d28 d
    SY1 3.4 0.866 0.3 11.8 19.6 28.1
    SY2 3.5 1.337 0.3 13.5 22.2 30.9
    SY3 3.6 1.808 0.3 27 33.4 38.8
    SY4 3.7 2.279 0.3 36.8 41.2 45.7
    SY5 3.8 2.750 0.3 52.9 57.9 62.6
    SY6 3.9 3.221 0.3 30.4 39 43.9
    SY7 4.0 3.693 0.3 23.1 32.3 36.4
    下载: 导出CSV

    表  5  不同矿物组分摩尔比下地质聚合物抗折强度

    Table  5.   Flexural strengths of geopolymers under different mineral molar ratios

    MixMole ratioWater-solid mass ratioFlexural strength/MPa
    SiO2/Al2O3CaO/Al2O33 d7 d28 d
    SY1 3.4 0.866 0.3 6.1 7.2 8.9
    SY2 3.5 1.337 0.3 6.4 7.6 9.1
    SY3 3.6 1.808 0.3 7.2 8.3 9.6
    SY4 3.7 2.279 0.3 7.9 8.9 10.3
    SY5 3.8 2.750 0.3 9.6 10.2 11.2
    SY6 3.9 3.221 0.3 4.2 5.8 6.9
    SY7 4.0 3.693 0.3 3.1 4.5 5.6
    下载: 导出CSV

    表  6  地质聚合物主要反应产物定量分析

    Table  6.   Quantitative analysis of main reaction products of geopolymers

    SY1SY2SY3SY4SY5SY6SY7
    Mole ratio of SiO2/Al2O3 3.4 3.5 3.6 3.7 3.8 3.9 4
    Mole ratio of CaO/Al2O3 0.866 1.337 1.808 2.279 2.75 3.221 3.693
    Quartz/wt% 25 36 51 61 66 44 31
    Mullite/wt% 30 24 18 10 6 4 3
    CaSiO3 hydrate/wt% 6 13 18 22 24 44 59
    下载: 导出CSV
  • [1] CLOETE S, GIUFFRIDA A, ROMANO M C, et al. The swing adsorption reactor cluster for post-combustion CO<sub>2</sub> capture from cement plants[J]. Journal of Cleaner Production,2019,223:692-703. doi:  10.1016/j.jclepro.2019.03.109
    [2] HE Z, ZHU X, WANG J, et al. Comparison of CO<sub>2</sub> emissions from OPC and recycled cement production[J]. Construction and Building Materials,2019,211:965-973. doi:  10.1016/j.conbuildmat.2019.03.289
    [3] XU F, GU G H, ZHANG W, et al. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method[J]. Ceramics International,2018,44(16):19989-19997. doi:  10.1016/j.ceramint.2018.07.267
    [4] 阚黎黎, 段贝贝, 闫涛. 高延性纤维增强偏高岭土-粉煤灰基地聚合物在不同环境下的自愈合性能[J]. 复合材料学报, 2018, 35(10):2841-2850.

    KAN L L, DUAN B B, YAN T. Self-healing characteristics of engineered geopolymer composites incorporating metakaolin and fly ash under different environments[J]. Acta Materiae Compositae Sinica,2018,35(10):2841-2850(in Chinese).
    [5] BOEKE N, BIRCH G D, NYALE S M, et al. New synthesis method for the production of coal fly ash-based foamed geopolymers[J]. Construction and Building Materials,2015,75:189-199. doi:  10.1016/j.conbuildmat.2014.07.041
    [6] ALOMAYRI T. Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al<sub>2</sub>O<sub>3</sub>)[J]. Journal of Building Engineering,2019,25:100788. doi:  10.1016/j.jobe.2019.100788
    [7] 张云升, 孙伟, 李宗津. PVA短纤维增强粉煤灰-地聚合物基挤压复合材料的动态行为[J]. 复合材料学报, 2009, 26(3):147-154. doi:  10.3321/j.issn:1000-3851.2009.03.026

    ZHANG Y S, SUN W, LI Z J. Dynamical behavior of PVA short fiber reinforced fly ash-geopolymeric extrusion composite[J]. Acta Materiae Compositae Sinica,2009,26(3):147-154(in Chinese). doi:  10.3321/j.issn:1000-3851.2009.03.026
    [8] 陈潇, 张浩宇, 霍神焕, 等. 壳聚糖改性地聚合物的力学及吸附性能[J]. 复合材料学报, 2019, 36(12):2959-2967.

    CHEN X, ZHANG H Y, HUO S H, et al. Mechanical and adsorption properties of the geopolymer modified by Chitosan[J]. Acta Materiae Compositae Sinica,2019,36(12):2959-2967(in Chinese).
    [9] XU F, DENG X, PENG C, et al. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites[J]. Construction and Building Materials,2017,150:179-189. doi:  10.1016/j.conbuildmat.2017.05.172
    [10] ZHANG Z, PROVIS J L, REID A, et al. Geopolymer foam concrete: An emerging material for sustainable construction[J]. Construction and Building Materials,2014,56:113-127. doi:  10.1016/j.conbuildmat.2014.01.081
    [11] 徐方, 顾功辉, 黄晓明, 等. 地质聚合物泡沫混凝土气孔结构形成机理研究[J/OL]. 建筑材料学报: 1-17[2019-07-22]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1011.007.html.

    XU F, GU G H, HUANG X M, et al. Investigation on the formation mechanism of pore structure in geopolymer foams[J/OL]. Journal of Building Materials, 1-17[2019-07-22]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1011.007.html(in Chinese).
    [12] 徐子芳, 杨政, 张娟. 污泥-高钙煤系废物制备地聚合物的技术与性能[J]. 复合材料学报, 2013, 30(5):113-118. doi:  10.3969/j.issn.1000-3851.2013.05.018

    XU Z F, YANG Z, ZHANG J. Preparation technology and properties of sludge-high calcium coal waste geopolymer[J]. Acta Materiae Compositae Sinica,2013,30(5):113-118(in Chinese). doi:  10.3969/j.issn.1000-3851.2013.05.018
    [13] HADI M N S, ZHANG H, PARKINSON S. Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability[J]. Journal of Building Engineering,2019,23:301-313. doi:  10.1016/j.jobe.2019.02.006
    [14] SUN K K, PENG X Q, WANG S P, et al. Design method for the mix proportion of geopolymer concrete based on the paste thickness of coated aggregate[J]. Journal of Cleaner Production,2019,232:508-517. doi:  10.1016/j.jclepro.2019.05.254
    [15] CHITHAMBARAM S J, KUMAR S, PRASAD M M. Thermo-mechanical characteristics of geopolymer mortar[J]. Construction and Building Materials,2019,213:100-108. doi:  10.1016/j.conbuildmat.2019.04.051
    [16] MA C, ZHAO B, GUO S, et al. Properties and characterization of green one-part geopolymer activated by composite activators[J]. Journal of Cleaner Production,2019,220:188-199. doi:  10.1016/j.jclepro.2019.02.159
    [17] CHEN X, NIU Z, WANG J, et al. Effect of sodium polyacrylate on mechanical properties and microstructure of metakaolin-based geopolymer with different SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio[J]. Ceramics International,2018,44(15):18173-18180. doi:  10.1016/j.ceramint.2018.07.025
    [18] 张鹏, 亢洛宜, 魏华, 等. 纳米SiO<sub>2</sub>和PVA纤维对地聚合物砂浆断裂性能的影响[J]. 建筑材料学报, 2019, 22(6):986-992.

    ZHANG P, KANG L Y, WEI H, etal. Effect of nano-SiO<sub>2</sub> and PVA fiber on fracture properties of geopolymer mortar[J]. Journal of Building Materials,2019,22(6):986-992(in Chinese).
    [19] JHONATHAN F R, NUNO C, FERNÁNDEZ-JIMÉNEZ A, et al. Synthesis of alkaline cements based on fly ash and metallurgic slag: Optimisation of the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and Na<sub>2</sub>O/SiO<sub>2</sub> molar ratios using the response surface methodology[J]. Construction and Building Materials,2019,213:424-433. doi:  10.1016/j.conbuildmat.2019.04.097
    [20] SILVA P D, SAGOE-CRENSTIL K, SIRIVIVATNANON V. Kinetics of geopolymerization: Role of Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>[J]. Cement and Concrete Research,2007,37(4):512-518. doi:  10.1016/j.cemconres.2007.01.003
    [21] BUMANIS G, VITOLA L, BAJARE D, et al. Impact of reactive SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio in precursor on durability of porous alkali activated materials[J]. Ceramics International,2017,43(7):5471-5477. doi:  10.1016/j.ceramint.2017.01.060
    [22] ZAWRAH M F, FARAG R S, KOHAIL M H. Improvement of physical and mechanical properties of geopolymer through addition of zircon[J]. Materials Chemistry and Physics,2018,217:90-97. doi:  10.1016/j.matchemphys.2018.06.024
    [23] KEPPERT M, VEJMELKOVÁ E, BEZDIČKA P, et al. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content[J]. Applied Clay Science,2018,161:82-89. doi:  10.1016/j.clay.2018.04.019
    [24] 国家质量技术监督局. 水泥胶砂强度检验方法(IOS法): GB/T17671—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Method of testing cement-Determination of strength: GB/T17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [25] 彭小芹, 何丽娟. 水热法制备水化硅酸钙纳米粉体[J]. 重庆大学学报(自然科学版), 2005(5):59-62.

    PENG X Q, HE L J. Preparation of hydrated calcium silicate nanopowder by hydrothermal method[J]. Journal of Chongqing University (Natural Science Edition),2005(5):59-62(in Chinese).
  • [1] 陈丁丁, 朱萌, 胡其高, 王曼漪, 王蕊.  含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190822.001
    [2] 赵晟, 张继文.  一种基于复合材料剩余强度的衍生疲劳损伤模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191224.002
    [3] 白成玲, 王磊, 朱振亚, 王旭东.  氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191016.001
    [4] 徐洪超, 关芳, 马凤莲, 张颖, 黄世峰.  压电陶瓷表面硅钙复合膜的制备与表征, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190909.003
    [5] 田庆丰, 唐源, 刘亚兰, 张春华, 丁涛, 李小红, 张治军.  表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.002
    [6] 汤连东, 吴袁泊, 袁利萍, 胡云楚, 刘月姣, 范友华.  磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200512.001
    [7] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [8] 关集俱, 刘德利, 王勇, 冯伯华, 许雪峰.  碳纳米管/油酸复合物制备的纳米流体的导电与润湿性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200313.001
    [9] 杨春风, 李勰, 张颖鑫, 王婷婷, 王会.  原位聚合法制备聚丙烯酸修饰的ZnS量子点, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200103.003
    [10] 薛艳华, 高明星, 袁飞龙, 李航天.  聚丙烯酰胺对石灰稳定土早期强度和破坏形式的影响, 复合材料学报.
    [11] 杨贵荣, 王宁, 宋文明, 李亚敏, 马颖.  WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200203.001
    [12] 王娟, 张法明, 商彩云, 张彬.  石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能, 复合材料学报.
    [13] 陈尚龙, 唐仕荣.  丙烯酸钠/玉米芯接枝共聚物的制备及其对Ni2+的吸附机制, 复合材料学报.
    [14] 赵莉, 杜蘅, 刘虎, 龚䶮, 李昕, 陈彦锟, 吴燕.  纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用, 复合材料学报.
    [15] 万陶磊, 常俊杰, 曾雪峰, 李媛媛.  基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191031.003
    [16] 任兴国, 孙靖尧, 赵中里, 黄尧, 刘颖, 吴大鸣.  超声强制浸润法制备碳纳米纸/聚合物导热复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200214.001
    [17] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [18] 曹玉贵, 赵国旭, 尹亚运.  基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测, 复合材料学报.
    [19] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报.
  • 加载中
图(6) / 表ll (6)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  31
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-10-29
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回