留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2-g-C3N4复合材料的制备及其在水泥石表面的应用

李燕 孙宝 王爱国 高晗

李燕, 孙宝, 王爱国, 等. TiO2-g-C3N4复合材料的制备及其在水泥石表面中的应用[J]. 复合材料学报, 2020, 37(8): 1981-1988 doi:  10.13801/j.cnki.fhclxb.20191129.002
引用本文: 李燕, 孙宝, 王爱国, 等. TiO2-g-C3N4复合材料的制备及其在水泥石表面中的应用[J]. 复合材料学报, 2020, 37(8): 1981-1988 doi:  10.13801/j.cnki.fhclxb.20191129.002
Yan LI, Bao SUN, Aiguo WANG, Han GAO. Preparation of TiO2-g-C3N4 composites and its application in cement stone surface[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002
Citation: Yan LI, Bao SUN, Aiguo WANG, Han GAO. Preparation of TiO2-g-C3N4 composites and its application in cement stone surface[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002

TiO2-g-C3N4复合材料的制备及其在水泥石表面的应用

doi: 10.13801/j.cnki.fhclxb.20191129.002
基金项目: 安徽省科技攻关计划项目(1301042127);安徽建筑大学先进建筑材料安徽省重点实验室开放课题(主任基金) (JZCL201604ZZ)
详细信息
    通讯作者:

    李燕,博士,教授,硕士生导师,研究方向为环境功能材料、高性能水泥基材料 E-mail:lyc171805@163.com

  • 中图分类号: O643.3

Preparation of TiO2-g-C3N4 composites and its application in cement stone surface

  • 摘要: 以Ti(SO4)2和尿素为原料,采用均匀沉淀法及不同煅烧温度制备了TiO2-g-C3N4复合材料。利用XRD和SEM对g-C3N4和TiO2-g-C3N4复合材料的结构及形貌进行了表征,并以模拟太阳光为光源,甲基橙为目标降解物,对其光催化活性进行了研究。将高催化性能的TiO2-g-C3N4复合材料与水泥石表面结合制备了具有光催化性能的水泥石。结果表明:在300℃和400℃条件下煅烧制备的TiO2-g-C3N4复合材料具有牢固异质结,而在500℃条件下煅烧产生N掺杂的TiO2。其中400℃条件下煅烧所得TiO2-g-C3N4复合材料的光催化性能最好,模拟太阳光光照60 min降解率达到91%。通过拟合计算,发现400℃条件下TiO2-g-C3N4复合材料的光催化速率最快。与400℃ TiO2-g-C3N4复合材料结合的水泥石也具有较好的光催化降解性能,模拟太阳光光照240 min降解率可达到90%以上,TiO2-g-C3N4复合材料在400°C可以降低水泥石的初凝终凝时间,并提高其抗压强度。
  • 图  1  不同煅烧温度下制备的TiO2-g-C3N4复合材料的照片

    Figure  1.  Photos of TiO2-g-C3N4 composite powders prepared at different calcination temperatures

    图  2  光催化水泥石的照片

    Figure  2.  Photo of photocatalytic cement stone

    图  3  尺寸为40 mm×40 mm×40 mm的水泥石试件外观图

    Figure  3.  Appearance diagram of 40 mm×40 mm×40 mm cement stone test cubes ((a) Photocatalytic cement stone; (b) Ordinary portland cement)

    图  4  g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的XRD图谱

    Figure  4.  XRD patterns of g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    图  5  g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的SEM图像

    Figure  5.  SEM images of g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures ((a) g-C3N4; (b) TiO2-g-C3N4−3;(c) TiO2-g-C3N4−4; (d) TiO2-g-C3N4-5)

    图  6  TiO2-g-C3N4复合材料制备机制示意图

    Figure  6.  Schematic diagram of the preparation mechanism of TiO2-g-C3N4 composite powders

    图  7  TiO2、g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的紫外-可见吸收光谱

    Figure  7.  UV-visible absorption spectra of TiO2, g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    图  8  TiO2、g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料降解甲基橙的降解速率曲线

    Figure  8.  Degradation rate curves of methyl orange degradation by TiO2, g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    图  9  TiO2-g-C3N4-4复合材料光催化水泥石降解甲基橙的降解速率曲线

    Figure  9.  Degradation rate curves of methyl orange degradation by TiO2-g-C3N4-4 composite photocatalytic cement stone

    图  10  TiO2-g-C3N4复合材料催化降解甲基橙机制

    Figure  10.  Mechanism of catalytic degradation of methyl orange by TiO2-g-C3N4 composite powder

    表  1  不同煅烧温度下制备的TiO2-g-C3N4复合材料样品编号

    Table  1.   Sample numbers of TiO2-g-C3N4 composite powders prepared at different calcination temperatures

    SampleTi(SO4)2/gTemperature/℃g-C3N4/gCO(NH2)2/gH2O/mL
    TiO2-g-C3N4-31.23000.460.920
    TiO2-g-C3N4-41.24000.460.920
    TiO2-g-C3N4-51.25000.460.920
    下载: 导出CSV

    表  2  TiO2、g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的拟合方程

    Table  2.   Fitting equations of TiO2, g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    SampleFitting equationkR2
    TiO2${\rm In}({C_t}/{C_0}) = - 0.0009t - 0.2183$−0.00090.977
    g-C3N4${\rm In}({C_t}/{C_0}) = - 0.0244t + 1.1728$−0.02440.994
    TiO2-g-C3N4-3${\rm In}({C_t}/{C_0}) = - 0.0290t + 0.004$−0.02900.998
    TiO2-g-C3N4-4${\rm In}({C_t}/{C_0}) = - 0.0305t - 0.183$−0.03050.993
    TiO2-g-C3N4-5${\rm In}({C_t}/{C_0}) = - 0.0133t + 0.0259$−0.01330.990
    Photocatalytic cement stone${\rm In}({C_t}/{C_0}) = - 0.001t - 0.2135$−0.0010.989
    Notes: k—Slope of straight line ; R2—Goodness of fit.
    下载: 导出CSV

    表  3  TiO2-g-C3N4-4复合材料光催化水泥石和普通硅酸盐力学性能

    Table  3.   Mechanical properties of TiO2-g-C3N4-4 composite photocatalytic cement stone and common silicate

    Cement based materialInitial setting time/minFinal setting time/minCompressive strength/MPa
    P·O42.554969128.2
    Photocatalytic cement based51866333.7
    下载: 导出CSV
  • [1] 刘刚, 韩立娟, 陈作雁, 等. V-N共掺杂TiO<sub>2</sub>/玻璃珠光催化复合材料的制备及光催化性能[J]. 复合材料学报, 2017, 34(5):1062-1068.

    LIU G, HAN L J, CHEN Z Y, et al. Preparation and photocatalytic properties of V-N co-doped TiO<sub>2</sub>/glass beads photocatalytic composite[J]. Acta Materiae Compositae Sinica,2017,34(5):1062-1068(in Chinese).
    [2] DU D, SHI W, WANG L, et al. Yolk-shell structured Fe<sub>3</sub>O<sub>4</sub>@void@TiO<sub>2</sub> as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline[J]. Applied Catalysis B: Environmental,2017,200:484-492. doi:  10.1016/j.apcatb.2016.07.043
    [3] 于艳, 姚秉华, 杨帆, 等. TiO<sub>2</sub>-ZnO复合中空微球的制备及光催化性能[J]. 复合材料学报, 2019, 36(1):206-212.

    YU Y, YAO B H, YANG F, et al. Preparation and photocatalytic properties of TiO<sub>2</sub>-ZnO composite hollow microspheres[J]. Acta Materiae Compositae Sinica,2019,36(1):206-212(in Chinese).
    [4] QI K Z, CHENG B, YU J G, et al. A review on TiO<sub>2</sub>-based Z-scheme photocatalysts[J]. Chinese Journal of Catalysis,2017,38(12):1936-1955.
    [5] 王佳忆, 王学江, 黄嘉瑜, 等. Br-N共掺杂TiO<sub>2</sub>/ 磁性炭复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2017, 34(4):890-898.

    WANG J Y, WANG X J, HUANG J Y, et al. Preparation and photocatalytic performance of Br-N codoped TiO<sub>2</sub>/magnetic carbon composites[J]. Acta Materiae Compositae Sinica,2017,34(4):890-898(in Chinese).
    [6] 李燕, 孙宝, 那泽生, 等. TiO<sub>2</sub>/偏高岭土复合粉制备及其光催化性能研究[J]. 非金属矿, 2019, 42(3):79-82. doi:  10.3969/j.issn.1000-8098.2019.03.022

    LI Y, SUN B, NA Z S, et al. Study on preparation of TiO<sub>2</sub>/Metakaolin composite powder and its photocatalytic properties[J]. Non-metallic Mines,2019,42(3):79-82(in Chinese). doi:  10.3969/j.issn.1000-8098.2019.03.022
    [7] ZHU Y, ZHANG Z, LU N, et al. Prolonging charge-separation states by doping lanthanideions into {001}/{101}facets-coexposed TiO<sub>2</sub> nanosheets for enhancing photocatalytic H<sub>2</sub> evolution[J]. Chinese Journal of Catalysis,2019,40(03):413-423. doi:  10.1016/S1872-2067(18)63182-1
    [8] JIANG H L, LIU J, LI M L, et al. Facile synthesis of C-decorated Fe, N co-doped TiO<sub>2</sub> with enhanced visible-light photocatalytic activity by a novel co-precursor method[J]. Chinese Journal of Catalysis,2018,39(4):747-759. doi:  10.1016/S1872-2067(18)63038-4
    [9] ADAMU H, MCCUE A J, TAYLOR R S F, et al. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu<sub>2</sub>O/TiO<sub>2</sub>, and Cu<sub>2</sub>O/TiO<sub>2</sub>-AC composites[J]. Applied Catalysis B: Environmental,2017,217:181-191. doi:  10.1016/j.apcatb.2017.05.091
    [10] NING X, LI J, YANG B, et al. Inhibition of photocorrosion of CdS via assembling with thin film TiO<sub>2</sub> and removing formed oxygen by artificial gill for visible light overall water splitting[J]. Applied Catalysis B: Environmental,2017,212:129-139. doi:  10.1016/j.apcatb.2017.04.074
    [11] LI Y, WANG P, HUANG C, et al. Synthesis and photocatalytic activity of ultrafine Ag<sub>3</sub>PO<sub>4</sub> nano-particles on oxygen vacated TiO<sub>2</sub>[J]. Applied Catalysis B: Environmental,2017,205:489-497. doi:  10.1016/j.apcatb.2016.12.059
    [12] 孙志明, 李雪, 马建宁, 等. 类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2018, 35(6):204-211.

    SUN Z M, LI X, MA J N, et al. Preparation of g-C<sub>3</sub>N<sub>4</sub>/illite composite and its visible-light-driven photocatalytic activity[J]. Acta Materiae Compositae Sinica,2018,35(6):204-211(in Chinese).
    [13] 周银, 张平, 邹赛, 等. 可磁分离 Fe<sub>3</sub>O<sub>4</sub>/C<sub>3</sub>N<sub>4</sub>复合材料的制备及其性能[J]. 复合材料学报, 2018, 35(11):3189-3195.

    ZHOU Y, ZHANG P, ZOU S, et al. Preparation and properties of magnetic separation Fe<sub>3</sub>O<sub>4</sub>/C<sub>3</sub>N<sub>4</sub> composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3189-3195(in Chinese).
    [14] LI F, YU Z, SHI H, et al. A mussel-inspired method to fabricate reduced graphene oxide/g-C<sub>3</sub>N<sub>4</sub>, composites membranes for catalytic dec- omposition and oil-in-water emulsion separation[J]. Chemical Engineering Journal,2017,322:33-45. doi:  10.1016/j.cej.2017.03.145
    [15] LU Z, ZENG L, SONG W, et al. In situ synthesis of C-TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer[J]. Applied Catalysis B Environmental,2017,202:489-499. doi:  10.1016/j.apcatb.2016.09.052
    [16] CHEN X, WEI J, HOU R, et al. Growth of g-C<sub>3</sub>N<sub>4</sub> on mesoporous TiO<sub>2</sub> spheres with high photocatalytic activity under visible light irradiation[J]. Applied Catalysis B: Environmental,2016,188:342-350. doi:  10.1016/j.apcatb.2016.02.012
    [17] LU L, WANG G, ZOU M, et al. Effects of calcining temperature on formation of hierarchical TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> hybrids as an effective Z-scheme heterojunction photocatalyst[J]. Applied Surface Science,2018,441:1012-1023. doi:  10.1016/j.apsusc.2018.02.080
    [18] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials,2012,22:4763-4770. doi:  10.1002/adfm.201200922
    [19] 何军辉, 姚武. 沸石及水泥基材料二次负载TiO<sub>2</sub>的光催化性能[J]. 建筑材料学报, 2020, 23(1):35-39.

    HE J H, YAO W. Photocatalytic performance of secondarily loading TiO<sub>2</sub> with zeolite and cement based materials[J]. Journal of Building Materials,2020,23(1):35-39(in Chinese).
    [20] 鲁浈浈, 刘栋, 张琪, 等. 负载氮化碳光催化混凝土的制备及性能表征[J]. 建筑材料学报, 2019, 22(4):559-566,583.

    LU Z Z, LIU D, ZHANG Q, et al. The preparation and characterization of photocatalytic concrete loaded with carbon nitride for degradation of automobile exhaust[J]. Journal of Building Materials,2019,22(4):559-566,583(in Chinese).
    [21] 徐名凤, 施惠生, 吴凯. TiO<sub>2</sub>光催化水泥基材料去除氮氧化物研究进展[J]. 新型建筑材料, 2019, 46(5):46-49, 53. doi:  10.3969/j.issn.1001-702X.2019.05.012

    XU M F, SHI H S, WU K. Research development of photocatalytic NOx abatement by TiO<sub>2</sub>-cementitious composites[J]. New Building Materials,2019,46(5):46-49, 53(in Chinese). doi:  10.3969/j.issn.1001-702X.2019.05.012
    [22] 张华森, 李喜宝, 冯志军, 等. 加热温度对尿素水溶液制备类石墨相氮化碳的影响及其机理[J]. 硅酸盐学报, 2018, 46(02):281-287.

    ZHANG H S, LI X B, FENG Z J, et al. Effect of heating temperature on preparation of graphite-like g-C<sub>3</sub>N<sub>4</sub> by pyrolysis of urea aqueous solution and its mechanism[J]. Journal of The Chinese Ceramic Society,2018,46(02):281-287(in Chinese).
    [23] ZHANG G, ZHANG T, LI B, et al. An ingenious strategy of preparing TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalyst: In situ growth of TiO<sub>2</sub> nanocrystals on g-C<sub>3</sub>N<sub>4</sub> nanosheets via impregnation-calcination method[J]. Applied Surface Science,2018,19(23):2012-4.
    [24] WANG H, YUAN X Z, WU Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Applied Catalysis B: Environmental,2015,174-175:445-454.
    [25] YU Y, GENG J, LI H, et al. Exceedingly high photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>/Gd-N-TiO<sub>2</sub> composite with nanoscale heterojunctions[J]. Solar Energy Materials and Solar Cells,2017,168:91-99. doi:  10.1016/j.solmat.2017.04.023
    [26] SHEN G D, PU Y P, CUI Y F, et al. Easy synthesis of TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterostructure photocatalyst with large surface area and excellent photocatalytic Activity[J]. Ceramics International,2017,43:664-670.
  • [1] 于翔, 董献辉, 桂久青, 张雪寅, 宋子豪, 李玥.  Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191128.001
    [2] 杨涛, 刘润爱, 王文先, 连俊杰, 郑凡林, 陈洪胜.  热轧高含量B4C颗粒增强Al基复合材料的成形性能, 复合材料学报.
    [3] 马恬, 朱晨, 刘成宝, 余辰辰, 张文雅, 钱君超, 陈志刚.  Co修饰CeO2复合材料的晶面调控及其光热催化脱硝性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200323.001
    [4] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [5] 涂言言, 赵子涵, 孙一强.  FeOOH-Ni(OH)2复合材料的制备及其电催化析氧性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190618.001
    [6] 牟明明, 袁光明, 陈世尧.  纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190929.004
    [7] 黄露露, 张艳玲, 王挺, 吴礼光, 董春颖.  弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建, 复合材料学报.
    [8] 宋萃, 戚明颖, 刘金芳, 祝茜.  Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200220.001
    [9] 黄慧玲, 张隐, 甘露, 潘明珠.  Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190801.001
    [10] 梁艳莉, 马剑琪, 郭少波.  核壳型磁性纳米复合材料CoFe2O4@PDA@Pt的制备及催化性能, 复合材料学报.
    [11] 张淑娟, 杨婕妤, 张翊青, 万正睿, 周立群, 王念贵.  Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191219.003
    [12] 陈嘉磊, 刘琦, 胡亚一, 沈周元, 陈秀玲, 周先波.  纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191107.001
    [13] 任保胜, 王瑞, 任金芝, 李建权, 陈其凤.  纳米TiO2/碳化植物纤维复合材料的制备与光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190924.003
    [14] 胡海霞, 傅雅琴.  N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191204.001
    [15] 刘颖琪, 翁文斌, 岑檠, 肖维, 王齐, 丛燕青, 张轶.  FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200917.001
    [16] 曹玉贵, 赵国旭, 尹亚运.  基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测, 复合材料学报.
    [17] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [18] 张扬, 曹玉贵, 胡志礼.  基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191223.002
    [19] 杜春艳, 宋佳豪, 谭诗杨, 阳露, 张卓, 余关龙.  石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能, 复合材料学报.
    [20] 胡金娟, 马春雨, 王佳琳, 王宁, 秦福文, 张庆瑜.  Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191217.001
  • 加载中
图(10) / 表ll (3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  46
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-11-05
  • 网络出版日期:  2019-12-02
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回