留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱缺陷影响L型层合板失效行为:实验和数值研究

于晓东 胡海晓 贾欲明 王敏 曹东风

于晓东, 胡海晓, 贾欲明, 等. 褶皱缺陷影响L型层合板失效行为:实验和数值研究[J]. 复合材料学报, 2020, 37(8): 1932-1943 doi:  10.13801/j.cnki.fhclxb.20191022.001
引用本文: 于晓东, 胡海晓, 贾欲明, 等. 褶皱缺陷影响L型层合板失效行为:实验和数值研究[J]. 复合材料学报, 2020, 37(8): 1932-1943 doi:  10.13801/j.cnki.fhclxb.20191022.001
Xiaodong YU, Haixiao HU, Yuming JIA, Min WANG, Dongfeng CAO. Impact of wrinkle defects on failure behavior of L-shaped laminates: Experimental and numerical study[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1932-1943. doi: 10.13801/j.cnki.fhclxb.20191022.001
Citation: Xiaodong YU, Haixiao HU, Yuming JIA, Min WANG, Dongfeng CAO. Impact of wrinkle defects on failure behavior of L-shaped laminates: Experimental and numerical study[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1932-1943. doi: 10.13801/j.cnki.fhclxb.20191022.001

褶皱缺陷影响L型层合板失效行为:实验和数值研究

doi: 10.13801/j.cnki.fhclxb.20191022.001
基金项目: 中国博士后科学基金(2018M632933);中央高校基本科研业务费专项资金(2018III066GX);湖北省自然科学基金(2017cFc809);湖北省对外科技合作项目(2013BHE008).
详细信息
    通讯作者:

    胡海晓,博士,副教授,研究方向为复合材料材料-工艺-结构一体化应用 E-mail:yiming9008@126.com

    曹东风,博士,助理研究员,研究方向为先进复合材料计算力学 E-mail:caodongf@whut.edu.cn

  • 中图分类号: TB330.1

Impact of wrinkle defects on failure behavior of L-shaped laminates: Experimental and numerical study

  • 摘要: 通过实验和数值分析相结合的方法开展了褶皱缺陷对L型复合材料层合板承载能力和失效过程影响的研究。实验方面,通过“横条法”人为引入褶皱缺陷,制备了含两种缺陷大小的L型层合板,研究了其在弯曲载荷作用下的承载能力和损伤扩展形式,并与无缺陷L型层合板进行对比分析。数值分析方面,基于3D Hashin失效准则的渐进损伤失效模型, 研究其失效过程中应力分布特征和失效模式,探求褶皱缺陷对L型层合板失效行为的影响机制。实验结果表明,褶皱缺陷会显著降低曲梁的承载能力,并使分层损伤演化的空间扩展特征从无褶皱试样的逐层扩展转变为褶皱区域的聚集式扩展。数值预测与实验现象吻合,并共同表明褶皱处横向应力和面法线应力的集中是导致结构提前失效的主导因素,且褶皱区域的应力集中改变了损伤过程中应力逐层重分配的趋势,导致含褶皱试样呈现出聚集式扩展的破坏特征。该工作可扩展应用于含褶皱缺陷L型层合板的安全性能评估及损伤容限设计。
  • 图  1  试样制备方法示意图

    Figure  1.  Schematic of the method for sample preparation

    图  2  光学显微镜下L型试样横截面形貌

    Figure  2.  Cross-sectional morphologies of L-shaped laminate captured by optical microscope

    图  3  实验仪器及加载装置

    Figure  3.  Experimental instrument and loading device

    图  4  含褶皱缺陷L型复合材料层合板弯曲位移-载荷曲线

    Figure  4.  Bending displacement-load curves of L-shaped composite laminates with wrinkle defects

    图  5  NW(无褶皱)组试样的破坏过程

    Figure  5.  Damage process of NW(no wrinkle) test samples

    图  6  SW(小褶皱)组试样的破坏过程

    Figure  6.  Damage process of SW(small wrinkle) test samples

    图  7  LW(大褶皱)组试样的破坏过程

    Figure  7.  Damage process of LW(large wrinkle) test samples

    图  8  含褶皱L型层合板的有限元模型

    Figure  8.  Finite element model of L-shaped laminate containing wrinkles

    图  9  渐进损伤分析基本流程

    Figure  9.  Progressive damage analysis flow

    图  10  含褶皱缺陷L型复合材料层合板数值模拟位移-载荷曲线

    Figure  10.  Numerical simulated displacement-load curves for L-shaped composite laminates with wrinkle defects

    图  11  NW组试样基体拉伸破坏扩展过程

    Figure  11.  Matrix tensile damage expansion process of NW sample

    图  12  NW组试样分层破坏扩展过程

    Figure  12.  Delamination damage expansion process of NW sample

    图  13  LW组试样基体拉伸破坏扩展过程

    Figure  13.  Matrix tensile damage expansion process of LW sample

    图  14  LW组试样分层破坏扩展过程

    Figure  14.  Delamination damage expansion process of LW sample

    图  15  NW组试样横向应力S22应力云图

    Figure  15.  Transverse stress S22 contour of NW sample

    图  16  NW组试样面外应力S33应力云图

    Figure  16.  Out-plane stress S33 contour of NW sample

    图  17  LW组试样S22应力云图

    Figure  17.  Stress S22 contour of LW sample

    图  18  LW组试样S33应力云图

    Figure  18.  Stress S33 contour of LW sample

    表  1  三组试样制备参数

    Table  1.   Parameters used for preparation of different samples

    SetQuantity of stacked prepreg stripsQuantity of spaceLocation of spacesHeight of wrinkle ${h_0}$/mm
    NW 0 0 No 0
    SW 4 2 7,11 0.4
    LW 8 4 7,11,15,19 0.8
    下载: 导出CSV

    表  2  HRC1单向层合板材料性能

    Table  2.   Material properties of HRC1 unidirectional laminate

    $ {E}_{11} $/GPa$ {E}_{22} $/GPa$ {E}_{33} $/GPa${\nu }_{12}$${\nu }_{13}$${\nu }_{23}$$ {G}_{12} $/GPa$ {G}_{13} $/GPa$ {G}_{23} $/GPa
    125 8.5 8.5 0.35 0.35 0.49 4.0 4.0 3.0
    $ {X}_{\rm{T}} $/MPa $ {X}_{\rm{C}} $/MPa $ {Y}_{\rm{T}} $/MPa $ {Y}_{\rm{C}} $/MPa $ {Z}_{\rm{T}} $/MPa $ {Z}_{\rm{C}} $/MPa $ {S}_{12} $/MPa $ {S}_{13} $/MPa $ {S}_{23} $/MPa
    1 700 1 000 45 180 40 160 75 75 70
    Notes: E—Elastic modulus; ν—Poisson ratio; G—Shear modulus; X, Y, Z—Strength in different directions; T—Tensile; C—Compressive; S—Shear strength; 1—Direction of fiber; 2—Direction of matrix; 3——Thickness direction of layer.
    下载: 导出CSV

    表  3  含褶皱缺陷L型复合材料层合板弹性常数退化系数

    Table  3.   Degeneration coefficients of elastic constants of L-shaped composite laminates with wrinkle defects

    Failure mode$ {E}_{11} $$ {E}_{22} $$ {E}_{33} $${\nu }_{12}$${\nu }_{13}$${\nu }_{23}$$ {G}_{12} $$ {G}_{13} $$ {G}_{23} $
    FV1 0.1 0.8 0.8 0.07 0.07 0.8 0.1 0.1 0.8
    FV2 0.1 0.8 0.8 0.07 0.07 0.8 0.8 0.8 0.8
    FV3 0.8 0.01 0.8 0.8 0.2 0.2 0.01 0.8 0.01
    FV4 0.8 0.1 0.8 0.8 0.2 0.2 0.2 0.8 0.2
    FV5 0.8 0.8 0.01 0.8 0.2 0.2 0.8 0.01 0.01
    下载: 导出CSV

    表  4  含褶皱缺陷L型复合材料层合板失效载荷、失效位移的模拟值与实验值对比

    Table  4.   Comparison of simulation and experimental failure load and failure displacement of L-shaped composite laminates with wrinkle defects

    IndexFailure load
    (test data) /(N·m−1)
    Failure load
    (FEA)/ (N·m−1)
    Error/
    %
    Failure displacement
    (test data)/mm
    Failure displacement
    (FEA)/mm
    Error/%
    NW 37.6 38.4 2.12 6.56 6.75 2.90
    SW 33.8 34.4 1.78 5.95 6.13 3.03
    LW 26.3 27.6 4.94 4.73 5.05 6.77
    下载: 导出CSV
  • [1] KUGLER D, MOON T J. Identification of the most significant processing parameters on the development of fiber waviness in thin laminates[J]. Journal of Composite Materials,2002,36(12):1451-1479. doi:  10.1177/0021998302036012575
    [2] POTTER K D, CAMPBELL M, LANGER C, et al. The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components[J]. Composites Part A: Applied Science and Manufacturing,2005,36(2):301-308. doi:  10.1016/S1359-835X(04)00150-2
    [3] STECENKO T, PIGGOTT M. Fiber waviness and other mesostructures in filament wound materials[J]. Journal of Reinforced Plastics and Composites,1997,16(18):1659-1674. doi:  10.1177/073168449701601803
    [4] HYER M W, MAAS L C, FUCHS H P. The influence of layer waviness on the stress state in hydrostatically loaded cylinders[J]. Journal of Reinforced Plastics and Composites,1988,7(8):601-613.
    [5] POTTER K, KHAN B, WISNOM M, et al. Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[J]. Composites Part A: Applied Science and Manufacturing,2008,39(9):1343-1354. doi:  10.1016/j.compositesa.2008.04.016
    [6] ALTMANN A, GESELL P, DRECHSLER K. Strength prediction of ply waviness in composite materials considering matrix dominated effects[J]. Composite Structures,2015,127:51-59. doi:  10.1016/j.compstruct.2015.02.024
    [7] MIZUKAMI K, MIZUTANI Y, TODOROKI A, et al. Detection of in-plane and out-of-plane fiber waviness in unidirectional carbon fiber reinforced composites using eddy current testing[J]. Composites Part B: Engineering,2016,86:84-94. doi:  10.1016/j.compositesb.2015.09.041
    [8] SUTCLIFFE M P F, LEMANSKI S L, SCOTT A E. Measurement of fibre waviness in industrial composite components[J]. Composites Science and Technology,2012,72(16):2016-2023. doi:  10.1016/j.compscitech.2012.09.001
    [9] LEONG M, OVERGAARD L C T, THOMSEN O T, et al. Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades[J]. Composite Structures,2012,94(2):768-778. doi:  10.1016/j.compstruct.2011.09.012
    [10] WILHELMSSON D, GUTKIN R, EDGREN F, et al. An experimental study of fibre waviness and its effects on compressive properties of unidirectional NCF composites[J]. Compo-sites Part A: Applied Scienceand Manufacturing,2018,107:665-674. doi:  10.1016/j.compositesa.2018.02.013
    [11] 朱俊, 吴维清, 欧阳佳斯, 等. 面外波纹对复合材料层合板弹性性能的影响[J]. 复合材料学报, 2016, 33(9):1981-1988.

    ZHU Jun, WU Weiqing, OUYANG Jiasi, et al. Influence of out-of-plane waviness on elastic properties of composite laminates[J]. Acta Materiae Composite Sinica,2016,33(9):1981-1988(in Chinese).
    [12] 曾文浩, 何鹏, 刘菲, 等. 含纤维波纹缺陷复合材料层合板的损伤分析[J]. 复合材料学报, 2019, 36(2):330-336.

    ZENG Wenhao, HE Peng, LIU Fei, et al. Damage analysis for composite laminate with fiber waviness[J]. Acta Materiae Composite Sinica,2019,36(2):330-336(in Chinese).
    [13] HAYMAN B, BERGGREEN C C, PETTERSSON R. The influence of face sheet wrinkle defects on the performance of FRP sandwich structures[M]. Netherlands: Springer, 2005: 393-402.
    [14] MUKHOPADHYAY S, JONES M I, HALLETT S R. Compressive failure of laminates containing an embedded wrinkle: Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2015,73:132-142. doi:  10.1016/j.compositesa.2015.03.012
    [15] EL-HAJJAR R F, PETERSEN D R. Gaussian function characterization of unnotched tension behavior in a carbon/epoxy composite containing localized fiber waviness[J]. Composite Structures,2011,93(9):2400-2408. doi:  10.1016/j.compstruct.2011.03.029
    [16] 何成智, 马小军, 李阳阳, 等. 褶皱对玻璃钢疲劳性能的影响[J]. 玻璃钢/复合材料, 2017(10):54-58.

    HE Chengzhi, MA Xiaojun, LI Yangyang, et al. Effect of wrinkles on fatigue properties of FRP[J]. Fiber Reinforced Plastics/Composites,2017(10):54-58(in Chinese).
    [17] BLOOM L D, WANG J, POTTER K D. Damage progression and defect sensitivity: An experimental study of representative wrinkles in tension[J]. Composites Part B: Engineering,2013,45(1):449-458. doi:  10.1016/j.compositesb.2012.05.021
    [18] WANG J, POTTER K, HAZRA K, et al. Experimental fabrication and characterization of out-of-plane fiber waviness in continuous fiber-reinforced composites[J]. Journal of Composite Materials,2012,46(17):2041-2053. doi:  10.1177/0021998311429877
    [19] DAVIDSON P, WAAS A M. The effects of defects on the compressive response of thick carbon composites: An experimental and computational study[J]. Composite Structures,2017,176:582-596. doi:  10.1016/j.compstruct.2017.05.046
    [20] LEMANSKI S L, WANG J, SUTCLIFFE M P F, et al. Modelling failure of composite specimens with defects under compression loading[J]. Composites Part A: Applied Science and Manufacturing,2013,48:26-36. doi:  10.1016/j.compositesa.2012.12.007
    [21] XIE N, SMITH R A, MUKHOPADHYAY S, et al. A numerical study on the influence of composite wrinkle defect geometry on compressive strength[J]. Materials <italic>&</italic> Design,2018,140:7-20.
    [22] HALLANDER P, AKERMO M, MATTEI C, et al. An experimental study of mechanisms behind wrinkle development during forming of composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2013,50:54-64. doi:  10.1016/j.compositesa.2013.03.013
    [23] DODWELL T J, BUTLER R, HUNT G W. Out-of-plane ply wrinkling defects during consolidation over an external radius[J]. Composites Science and Technology,2014,105:151-159. doi:  10.1016/j.compscitech.2014.10.007
    [24] LIGHTFOOT J S, WISNOM M R, POTTER K. A new mechanism for the formation of ply wrinkles due to shear between plies[J]. Composites Part A: Applied Science and Manufacturing,2013,49:139-147. doi:  10.1016/j.compositesa.2013.03.002
    [25] JOHNSON K J, BUTLER R, LOUKAIDES E G, et al. Stacking sequence selection for defect-free forming of unidirectional ply laminates[J]. Composites Science and Technology,2019,171:34-43. doi:  10.1016/j.compscitech.2018.11.048
    [26] GUILLAUME S, YURI N, ANDREW M, et al. Mesh morphing methodology for strength predictions in composites[J]. Composite Structures,2016,140:612-620. doi:  10.1016/j.compstruct.2015.12.021
    [27] FEIH S, SHERCLIFF H R. Composite failure prediction of single-L joint structures under bending[J]. Composites Part A: Applied Science <italic>& </italic>Manufacturing,2005,36(3):381-395.
    [28] CAO D, DUAN Q, HU H, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements[J]. Composite Structures,2018,192:300-309. doi:  10.1016/j.compstruct.2018.02.072
    [29] WIMMER G, KITZMÜLLER W, PINTER G, et al. Computational and experimental investigation of delamination in L-shaped laminated composite components[J]. Engineering Fracture Mechanics,2009,76(18):2810-2820. doi:  10.1016/j.engfracmech.2009.06.007
    [30] BURAK GÖZLÜKLÜ, COKER D. Modeling of the dynamic delamination of L-shaped unidirectional laminated composites[J]. Composite Structures,2012,94(4):1430-1442. doi:  10.1016/j.compstruct.2011.11.015
    [31] WISNOM M R. 3-D finite element analysis of curved beams in bending[J]. Journal of Composite Materials,1996,30(11):1178-1190. doi:  10.1177/002199839603001101
    [32] 王跃全, 童明波, 朱书华. 三维复合材料层合板渐进损伤非线性分析模型[J]. 复合材料学报, 2009, 26(5):159-166. doi:  10.3321/j.issn:1000-3851.2009.05.026

    WANG Yuequan, TONG Mingbo, ZHU Shuhua. 3D nonlinear progressive damage analysis model for composite laminates[J]. Acta Materiae Composite Sinica,2009,26(5):159-166(in Chinese). doi:  10.3321/j.issn:1000-3851.2009.05.026
    [33] ZHOU S, WANG Z, ZHOU J, et al. Experimental and numerical investigation on bolted composite joint made by vacuum assisted resin injection[J]. Composites Part B: Engineering,2013,45(1):1620-1628. doi:  10.1016/j.compositesb.2012.08.025
    [34] 吴义韬, 姚卫星, 沈浩杰. 复合材料宏观强度准则预测能力分析[J]. 复合材料学报, 2015, 32(3):864-873.

    WU Yitao, YAO Weixing, SHEN Haojie. Prediction ability analysis of macroscopic strength criteria for composites[J]. Acta Materiae Composite Sinica,2015,32(3):864-873(in Chinese).
    [35] YU G C, WU L Z, MA L, et al. Low velocity impact of carbon fiber aluminum laminates[J]. Composite Structures,2015,119:757-766. doi:  10.1016/j.compstruct.2014.09.054
    [36] SU Z C, TAY T E, RIDHA M, et al. Progressive damage modeling of open-hole composite laminates under compression[J]. Composite Structures,2015,122:507-517. doi:  10.1016/j.compstruct.2014.12.022
  • [1] 张扬, 曹玉贵, 胡志礼.  基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191223.002
    [2] 梅生启, 唐广, 杨斌, 王元丰.  基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191230.002
    [3] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [4] 苏毅, 李婷, 李爱群.  基于多指标控制的聚氨酯阻尼材料动态力学性能稳健分析, 复合材料学报.
    [5] 丁一宁, 马跃, 郝晓卫.  基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响, 复合材料学报.
    [6] 张兆杭, 崔少康, 谭志勇, 杨振宇, 卢子兴.  C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191216.001
    [7] 田会文, 周臻, 陆纪平, 彭振.  纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190827.001
    [8] 姜碧羽, 齐俊伟, 刘小林.  预浸料先进拉挤成型的固化传热过程数值模拟, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190904.001
    [9] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [10] 郝兆峰, 张戎令, 王起才, 祁强, 庄立普, 黄国栋.  钢管混凝土缺陷对徐变性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.001
    [11] 谢波涛, 高亮, 江帅, 李梦军.  含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应, 复合材料学报.
    [12] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [13] 胡春幸, 侯玉亮, 铁瑛, 李成, 田可可.  基于遗传算法的CFRP层合板单搭胶接结构的多目标优化, 复合材料学报.
    [14] 卫宇璇, 张明, 刘佳, 刘硕, 崔志刚.  基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能, 复合材料学报.
    [15] 王计真, 刘小川.  考虑面内载荷的复合材料层合板冲击性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191125.001
    [16] 何柏灵, 葛东云.  复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.004
    [17] 张栋梁, 薛向晨, 梁宪珠, 湛利华, 杨晓波, 郑晓玲.  实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因, 复合材料学报.
    [18] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [19] 王遥, 曹东风, 胡海晓, 冀运东, 宋培豪, 李书欣.  单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究, 复合材料学报.
    [20] 张辰, 饶云飞, 李倩倩, 李炜.  碳-玻混杂复合材料低速冲击性能及其模拟, 复合材料学报.
  • 加载中
图(18) / 表ll (4)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  40
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-10-17
  • 网络出版日期:  2019-10-22
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回