留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能

刘丽 韩思杰 张松 靳惠宇 周凌

刘丽, 韩思杰, 张松, 等. 二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能[J]. 复合材料学报, 2020, 37(10): 1-8 doi:  10.13801/j.cnki.fhclxb.20190902.003
引用本文: 刘丽, 韩思杰, 张松, 等. 二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能[J]. 复合材料学报, 2020, 37(10): 1-8 doi:  10.13801/j.cnki.fhclxb.20190902.003
Li LIU, Sijie HAN, Song ZHANG, Huiyu JIN, Ling ZHOU. Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethyl phosphate and halloysite nanotubes[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20190902.003
Citation: Li LIU, Sijie HAN, Song ZHANG, Huiyu JIN, Ling ZHOU. Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethyl phosphate and halloysite nanotubes[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20190902.003

二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能

doi: 10.13801/j.cnki.fhclxb.20190902.003
基金项目: 国家高技术研发计划(863计划)(2015AA033905)
详细信息
    通讯作者:

    刘丽,博士,教授,博士生导师,研究方向为功能纤维、面料纺织品及聚合物基复合材料  E-mail:liuli2002@shu.edu.cn

  • 中图分类号: TB332;TQ323.6

Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethyl phosphate and halloysite nanotubes

  • 摘要: 使用二乙基次磷酸铝(ADP)与埃洛石纳米管(HNTs)作为阻燃体系,采用熔融共混法对尼龙66(PA66)进行阻燃改性,研究了ADP与HNTs的配比对ADP-HNTs/PA66复合材料的阻燃性能、力学性能及热稳定性的影响,对燃烧残炭进行SEM观察,通过TG-IR和FTIR的手段研究阻燃机制。研究发现,ADP-HNTs/PA66复合材料的阻燃性能随HNTs的比例增大而先增高后下降,在阻燃体系为11wt%ADP-1wt%HNTs时,ADP-HNTs/PA66复合材料的UL94阻燃等级为V-0级,极限氧指数(LOI)35.6%,具有协效阻燃作用;拉伸强度及断裂伸长率随ADP-HNTs阻燃体系中HNTs的比例在一定范围内增大而逐渐增大,冲击强度则逐渐下降;TG分析表明,HNTs能够促进成炭,减缓降解;SEM结果显示,ADP-HNTs阻燃体系能够形成连续致密炭层;TG-IR和FTIR分析表明,ADP兼具气相及凝聚相阻燃,HNTs能够在凝聚相中与ADP产生相互作用,促进交联成炭。
  • 图  1  阻燃剂二乙基次磷酸铝(ADP)及埃洛石纳米管(HNTs)结构示意图

    Figure  1.  Structure of aluminium diethyl phosphate (ADP) and halloysite nanotubes (HNTs)

    图  2  ADP-HNTs/PA66复合材料的TG及DTG曲线

    Figure  2.  TG and DTG curves of ADP-HNTs/PA66 composites

    图  3  PA66及其不同阻燃体系复合材料的残炭SEM图像

    Figure  3.  SEM images of residual carbon of PA66 and its different flame retardant composites

    图  4  PA66及其不同阻燃体系复合材料热降解过程中不同温度下的TG-IR图谱

    Figure  4.  TG-IR spectra of PA66 and its different flame retardant composites at different temperatures during thermal degradation

    图  5  12wt%ADP/PA66(S1)及10wt%ADP-2wt%HNTs/PA66(S3)燃烧前后的FTIR图谱

    Figure  5.  FTIR spectra of 12wt% ADP /PA66 (S1) and 10wt% ADP-2wt%HNTs /PA66 (S3) before and after combustion ((a) 12wt%ADP/PA66(S1)before combustion; (b) 12wt%ADP/PA66(S1) residual char; (c) 10wt%ADP-2wt%HNTs/PA66(S3) before combustion; (d)10wt%ADP-2wt%HNTs/PA66(S3) residual char)

    图  6  ADP与HNTs之间在ADP-HNTs/PA66复合材料凝聚相阻燃中可能的反应机制

    Figure  6.  Possible reaction mechanism between ADP and HNTs in ADP-HNTs/PA66 composite condensed phase flame retardant

    表  1  ADP-HNTs/尼龙66(PA66)复合材料配方

    Table  1.   Formulation of ADP-HNTs/nylon 66 (PA66) composites

    No.Mass fraction/wt%
    PA66ADPHNTsAntioxidants
    S0 100 0 0 0.0
    S1 87.5 12 0 0.5
    S2 87.5 11 1 0.5
    S3 87.5 10 2 0.5
    S4 87.5 9 3 0.5
    S5 87.5 8 4 0.5
    S6 86.5 10 3 0.5
    S7 85.5 10 4 0.5
    下载: 导出CSV

    表  2  ADP-HNTs/PA66复合材料的垂直燃烧(UL94)及极限氧指数(LOI)测试结果

    Table  2.   Vertical burning test (UL94) and limit oxygen index (LOI) test results of ADP-HNTs/PA66 composites

    No.UL 94LOI/%
    3.2 mmDripping1.6 mmDripping
    S0 V-2 Yes NR Yes 24.5
    S1 V-1 No V-2 Yes 33.3
    S2 V-0 No V-0 No 35.6
    S3 V-0 No V-0 No 33.8
    S4 V-0 No V-2 Yes 33.2
    S5 V-2 Yes V-2 Yes 32.0
    Note:NR—No rating.
    下载: 导出CSV

    表  3  ADP-HNTs/PA66复合材料的力学性能

    Table  3.   Mechanical properties of ADP-HNTs/PA66 composites

    No.Tensile strength/MPaElongation at break/%Impact strength/(kJ·m−2)
    S0 68.1 53.5 7.0
    S1 63.5 10.6 4.0
    S2 65.9 13.3 3.9
    S3 68.2 24.7 3.8
    S4 70.2 22.1 3.6
    S5 69.6 19.0 3.0
    S6 68.2 24.7 3.8
    S7 68.8 26.5 3.4
    下载: 导出CSV
  • [1] 徐翔民, 张予东, 李宾杰, 等. 纳米SiO<sub>2</sub>/尼龙66复合材料的力学性能和热性能[J]. 复合材料学报, 2008, 25(4):56-61. doi:  10.3321/j.issn:1000-3851.2008.04.011

    XU Xiangmin, ZHANG Yudong, LI Binjie, et al. Mechanical and thermal properties of nano-SiO<sub>2</sub>/nylon 66 compo-sites[J]. Acta Materiae Compositae Sinica,2008,25(4):56-61(in Chinese). doi:  10.3321/j.issn:1000-3851.2008.04.011
    [2] 甘舟, 曹海琳, 晏义伍, 等. 碳纤维-Ni/尼龙66复合材料的制备与性能表征[J]. 复合材料学报, 2017, 34(5):945-951.

    GAN Zhou, CAO Hailin, YAN Yiwu, et al. Preparation and characterization of carbon fiber-Ni/nylon 66 composites[J]. Acta Materiae Compositae Sinica,2017,34(5):945-951(in Chinese).
    [3] 周霆, 唐银花, 田冶, 等. 高性能微胶囊化红磷阻燃ABS的协效作用[J]. 高分子材料科学与工程, 2010, 26(7):129-132.

    ZHOU Ting, TANG Yinhua, TIAN Ye, et al. The synergistic effect of microencapsulized red phosphorus flame retarded ABS composites[J]. Polymer Materials Science and Engineering,2010,26(7):129-132(in Chinese).
    [4] 程宝发, 马腾昊, 李向梅, 等. 聚酰胺6/二乙基次磷酸铝复合材料的阻燃性能[J]. 合成树脂及塑料, 2016, 33(4):24-28. doi:  10.3969/j.issn.1002-1396.2016.04.007

    CHENG Baofa, MA Tenghao, LI Xiangmei, et al. Flame retardant performance of PA6/ADP composites[J]. China Synthetic Resin and Plastics,2016,33(4):24-28(in Chinese). doi:  10.3969/j.issn.1002-1396.2016.04.007
    [5] 曹堃, 王开立, 姚臻. 聚磷酸铵的改性及其对聚丙烯阻燃特性的研究[J]. 高分子材料科学与工程, 2007, 23(4):136-139. doi:  10.3321/j.issn:1000-7555.2007.04.035

    CAO Kun, WANG Kaili, YAO Zhen. Modified ammonium polyphosphate and its application on polypropylene[J]. Polymer Materials Science and Engineering,2007,23(4):136-139(in Chinese). doi:  10.3321/j.issn:1000-7555.2007.04.035
    [6] 王建荣, 欧育湘, 刘治国, 等. 聚磷酸三聚氰胺对玻纤增强PA66的膨胀阻燃作用[J]. 工程塑料应用, 2004, 32(2):52-54. doi:  10.3969/j.issn.1001-3539.2004.02.015

    WANG Jianrong, OU Yuxiang, LIU Zhiguo, et al. Intumescent <italic>&</italic> fire-retardant function of melamine polyphosphate on glass fiber reinforced PA66[J]. Engineering Plastics Application,2004,32(2):52-54(in Chinese). doi:  10.3969/j.issn.1001-3539.2004.02.015
    [7] ZHANG S, TANG W, GU X, et al. Flame retardancy and thermal and mechanical performance of intercalated, layered double hydroxide composites of polyamide 11, aluminum phosphinate, and sulfamic acid[J]. Journal of Applied Polymer Science,2016,133(20).
    [8] 陈雅君, 毛小军, 钱立军, 等. 二乙基次膦酸铝和OMMT在PLA中协同阻燃作用研究[J]. 工程塑料应用, 2015(3):19-24.

    CHEN Yajun, MAO Xiaojun, QIAN Lijun, et al. Synergistic effect between aluminum hypophosphite and OMMT in flame-retarded PLA[J]. Engineering Plastics Application,2015(3):19-24(in Chinese).
    [9] 王悦音. 二乙基次膦酸铝尺寸形貌调控及其应用研究[D]. 杭州: 浙江工业大学, 2017.

    WANG Yueyin. Study on size morphology control and application of Aluminum diethylphosphinate[D]. Hangzhou: Zhejiang University of Technology, 2017(in Chinese).
    [10] 赵婉, 何敏, 张道海, 等. 含磷阻燃剂/硅酸盐协同阻燃尼龙6的研究进展[J]. 塑料, 2015, 44(6):41-44.

    ZHAO Wan, HE Min, ZHANG Daohai, et al. Research progress of phosphorus-containing flame retardant/silicate synergistic flame retardant nylon 6[J]. Plastic,2015,44(6):41-44(in Chinese).
    [11] 展召顺. 次磷酸铝阻燃协效体系对PA66性能及机理研究[D]. 哈尔滨: 东北林业大学, 2015.

    ZHAN Zhaoshun. Study on performance and mechanism of PA66 by Aluminum phosphate flame retardant synergistic system[D]. Harbin: Northeast Forestry University, 2015(in Chinese).
    [12] MARNEY D C O, RUSSELL L J, WU D Y, et al. The suitability of halloysite nanotubes as a fire retardant for nylon 6[J]. Polymer Degradation and Stability,2008,93(10):1971-1978. doi:  10.1016/j.polymdegradstab.2008.06.018
    [13] MARNEY D C O, YANG W, RUSSELL L J, et al. Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6[J]. Polymers for Advanced Technologies,2012,23(12):1564-1571. doi:  10.1002/pat.3030
    [14] 刘喜山, 谷晓昱, 姜鹏, 等. 埃洛石纳米管对膨胀阻燃聚丙烯阻燃性能的影响[J]. 中国塑料, 2013, 27(2):86-89.

    LIU Xishan, GU Xiaoyu, JIANG Peng, et al. Effect of halloysite on flame retardant intumescent flame retardant modified polypropylene[J]. China Plastics,2013,27(2):86-89(in Chinese).
    [15] 全国塑料标准化技术委员会. 塑料: 燃烧性能的测定—水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of burning characteristics-Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [16] 全国塑料标准化技术委员会. 塑料: 用氧指数法测定燃烧行为: GB/T 2406—2009[S]. 北京: 中国标准出版社, 2009.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of burning behaviour by oxygen index: GB/T 2406—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [17] 全国塑料标准化技术委员会. 塑料: 拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of tensile properties: GB/T 1040—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [18] 全国塑料标准化技术委员会. 塑料: 拉伸性能的测定: GB/T 1043—2008[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of charpy impact properties: GB/T 1043—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [19] 郭宝春, 邹全亮, 类延达, 等. 尼龙6/埃洛石纳米管纳米复合材料的制备与性能[J]. 化工新型材料, 2008, 36(6):32-34. doi:  10.3969/j.issn.1006-3536.2008.06.012

    GUO Baochun, ZOU Quanliang, LEI Yanda, et al. Preparation and properties of polyamide 6/halloysite nanotubes nanocomposites[J]. New Chemical Materials,2008,36(6):32-34(in Chinese). doi:  10.3969/j.issn.1006-3536.2008.06.012
    [20] BRAUN U, SCHARTEL B, FICHERA M A, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6[J]. Polymer Degradation <italic>&</italic> Stability,2007,92(8):1528-1545.
    [21] LI L, WU Z, JIANG S, et al. Effect of halloysite nanotubes on thermal and flame retardant properties of polyamide 6/melamine cyanurate composites[J]. Polymer Compo-sites,2015,36(5):892-896. doi:  10.1002/pc.23008
    [22] Yuan B, Bao C, Guo Y, et al. Preparation and characterization of flame-retardant aluminum hypophosphite/poly(vinyl alcohol) composite[J]. Industrial <italic>&</italic> Engineering Chemistry Research,2012,51(43):14065-14075.
    [23] BRAUN U, SCHARTEL B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate)[J]. Macromolecular Materials <italic>&</italic> Engineering,2010,293(3):206-217.
    [24] BRAUN U, BAHR H, STURM H, et al. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation[J]. Polymers for Advanced Technologies,2010,19(6):680-692.
    [25] ZHI H, LIN G P, et al. Flame retardation of glass-fiber-reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate[J]. Polymers for Advanced Technologies,2011,22(7):1166-1173. doi:  10.1002/pat.1922
    [26] ZHAN Z, XU M, LI B. Synergistic effects of sepiolite on the flame retardant properties and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate composites[J]. Polymer Degradation and Stability,2015,117:66-74. doi:  10.1016/j.polymdegradstab.2015.03.018
    [27] SI M, FENG J, HAO J, et al. Synergistic flame retardant effects and mechanisms of nano-Sb<sub>2</sub>O<sub>3</sub> in combination with aluminum phosphinate in poly(ethylene terephthalate)[J]. Polymer Degradation and Stability,2014,100:70-78. doi:  10.1016/j.polymdegradstab.2013.12.023
  • [1] 王双, 田晨晨, 宁南英, 张立群, 吕亚非, 田明.  碳纳米管/橡胶复合材料的界面性能:碳纳米管的比表面积的影响, 复合材料学报. 2021, (): 1-12.
    [2] 杨旭东, 安涛, 冯晓琳, 邹田春, 纵荣荣.  泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性, 复合材料学报. 2020, 37(8): 1850-1860. doi: 10.13801/j.cnki.fhclxb.20191206.002
    [3] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [4] 魏阿静, 李运涛, 马忠雷.  柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维, 复合材料学报. 2020, 37(8): 2045-2054. doi: 10.13801/j.cnki.fhclxb.20200103.002
    [5] 闫艳红, 王腾彬, 吴子健, 卢欢, 贾志宁.  基于正交设计的纳米蛇纹石-纳米氧化镧/聚四氟乙烯复合材料在沙尘环境下的摩擦学性能, 复合材料学报. 2020, 37(7): 1522-1530. doi: 10.13801/j.cnki.fhclxb.20191024.001
    [6] 黄朋朋, 芦刚, 严青松, 郭振华, 晏玉平.  陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响, 复合材料学报. 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002
    [7] 李玮, 程先华.  稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响, 复合材料学报. 2020, 37(11): 1-9.
    [8] 魏成成, 孙晓刚, 梁国东, 黄雅盼, 胡浩, 徐宇浩.  Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能, 复合材料学报. 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002
    [9] 孙伟, 柏跃磊, 张强, 刘玉坤, 朱春城.  碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能, 复合材料学报. 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
    [10] 张子靖, 刘畅, 李如会, 吴崇刚, 龚兴厚, 胡涛.  硅烷化多壁碳纳米管/硅橡胶复合材料的制备和介电性能, 复合材料学报. 2020, 37(7): 1675-1683. doi: 10.13801/j.cnki.fhclxb.20191113.004
    [11] 关集俱, 刘德利, 王勇, 冯伯华, 许雪峰.  碳纳米管/油酸复合物制备的纳米流体的导电与润湿性能, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20200313.001
    [12] 欧华杰, 陈港, 朱朋辉, 魏渊, 李方.  纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.003
    [13] 李文超, 唐仁衡, 肖方明, 黄玲, 王英.  纳米Si掺杂SiOx-Si@C@碳纳米管复合负极材料的制备及性能, 复合材料学报. 2020, 37(8): 1989-1996. doi: 10.13801/j.cnki.fhclxb.20191206.005
    [14] 汤连东, 吴袁泊, 袁利萍, 胡云楚, 刘月姣, 范友华.  磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用, 复合材料学报. 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
    [15] 张明艳, 王登辉, 吴子剑, 杨振华, 刘居.  改性碳纳米管/环氧树脂复合材料的介电性能, 复合材料学报. 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001
    [16] 段聪, 房轶群, 王奉强, 于云鹏, 权大通, 张显权, 王清文.  纳米氮化硼与氧化锌协效阻燃WF-PVC复合材料, 复合材料学报. 2020, 37(): 1-8.
    [17] 李亮, 蔡再生.  磷氮复合阻燃环氧树脂的制备及其阻燃性能, 复合材料学报. 2020, 37(11): 1-11.
    [18] 高顺, 郭正虹.  纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制, 复合材料学报. 2020, 37(11): 1-11.
    [19] 陈博, 房轶群, 司月月, 王奉强, 邵博, 宋永明, 王清文.  胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能, 复合材料学报. 2020, 37(): 1-10.
    [20] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
  • 加载中
计量
  • 文章访问数:  144
  • HTML全文浏览量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 录用日期:  2019-07-18
  • 网络出版日期:  2019-09-03

目录

    /

    返回文章
    返回