Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
HU Yiwei, LI Yazhi, LI Biao, et al. 3D printed fibre-reinforced polymer composites—Review of the fused deposition modeling process and mechanical performance of products[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 979-996. doi: 10.13801/j.cnki.fhclxb.20210118.003
Citation: HU Yiwei, LI Yazhi, LI Biao, et al. 3D printed fibre-reinforced polymer composites—Review of the fused deposition modeling process and mechanical performance of products[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 979-996. doi: 10.13801/j.cnki.fhclxb.20210118.003

3D printed fibre-reinforced polymer composites—Review of the fused deposition modeling process and mechanical performance of products

doi: 10.13801/j.cnki.fhclxb.20210118.003
  • Received Date: 2020-10-07
  • Accepted Date: 2021-01-10
  • Available Online: 2021-01-19
  • Publish Date: 2021-04-08
  • Applying additive manufacturing (AM), also termed as three-dimensional printing (3D printing), is an emerging technology for creating objects by sequential layering. Recently, the exponential research on improving mechanical performance of 3D printed productions by introducing continuous fibre-reinforcement has contributed to develop high-performance polymeric composites. In the present review, by introducing brief history of AM technique for polymerics, the positive influence on improving performance of printed productions resulted from technology- and material-revolution were described. Following that, the review focused on the mechanism of the fused deposition modelling (FDM) method for fabricating continuous fibre reinforced composites, as well as the advantages and problems of the mechanical performance for productions. Additionally, the probable contributing factors were reviewed herein from the aspects of materials, process parameters and meso/microstructures of the printed composites. The review might be helpful to the readers who are concerning with the issues of the FDM technique.

     

  • loading
  • [1]
    QUAN Z, WU A, KEEFE M, et al. Additive manufacturing of multi-directional preforms for composites: Opportunities and challenges[J]. Materials Today,2015,18(9):503-512. doi: 10.1016/j.mattod.2015.05.001
    [2]
    CALIGNANO F, MANFREDI D, AMBROSIO E P, et al. Overview on additive manufacturing technologies[J]. Proceedings of the IEEE,2017,105(4):593-612. doi: 10.1109/JPROC.2016.2625098
    [3]
    HELLER C, SCHWENTENWEIN M, RUSSMUELLER G, et al. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2009,47(24):6941-6954. doi: 10.1002/pola.23734
    [4]
    BEAMAN J J. Solid freeform fabrication: A new direction in manufacturing: with research and applications in thermal laser processing[M]. New York, USA: Springer, 2013.
    [5]
    HINCZEWSKI C, CORBEL S, CHARTIER T. Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society,1998,18(6):583-590. doi: 10.1016/S0955-2219(97)00186-6
    [6]
    MELCHELS F P W, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials,2010,31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
    [7]
    CHEAH C M, FUH J Y H, NEE A Y C, et al. Mechanical characteristics of fiber-filled photo-polymer used in stereolithography[J]. Rapid Prototyping Journal,1999,5(3):112-119. doi: 10.1108/13552549910278937
    [8]
    KARALEKAS E. Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping[J]. Materials & Design,2003,24(8):665-670.
    [9]
    MUELLER J, COURTY D, SPIELHOFER M, et al. Mechanical properties of interfaces in Inkjet 3D printed single- and multi-material parts[J]. 3D Printing and Additive Manufacturing,2017,4(4):193-199. doi: 10.1089/3dp.2017.0038
    [10]
    COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials,2014,26(34):5930-5935. doi: 10.1002/adma.201401804
    [11]
    ZIAEE M, CRANE N B. Binder jetting: A review of process, materials, and methods[J]. Additive Manufacturing,2019,28:781-801. doi: 10.1016/j.addma.2019.05.031
    [12]
    WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034
    [13]
    DIZON J R C, ESPERA A H, CHEN Q, et al. Mechanical characterization of 3D-printed polymers[J]. Additive Manufacturing,2018,20:44-67. doi: 10.1016/j.addma.2017.12.002
    [14]
    ASTM. Standard terminolgy for additive manufacturing technologies: F2792-12a A[J]. ASTM International, West Conshohocken, 2015.
    [15]
    KLOSTERMAN D, CHARTOFF R, GRAVES G, et al. Interfacial characteristics of composites fabricated by laminated object manufacturing[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9):1165-1174.
    [16]
    SOOD A K, OHDAR R K, MAHAPATRA S S. Parametric appraisal of mechanical property of fused deposition modelling processed parts[J]. Materials & Design,2010,31(1):287-295.
    [17]
    WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing[J]. Progress in Materials Science,2020,111:100638.
    [18]
    TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology,2014,105:144-150. doi: 10.1016/j.compscitech.2014.10.009
    [19]
    BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing,2018,21:1-16. doi: 10.1016/j.addma.2018.01.002
    [20]
    GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design,2018,137:79-89.
    [21]
    JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. doi: 10.1016/j.compstruct.2017.11.052
    [22]
    KLIFT F V D, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials,2016,6(1):18-27.
    [23]
    PYL L, KALTEREMIDOU K-A, VAN HEMELRIJCK D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites[J]. Polymer Testing,2018,71:318-328. doi: 10.1016/j.polymertesting.2018.09.022
    [24]
    MEI H, ALI Z, ALI I, et al. Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites[J]. Advanced Composites and Hybrid Materials,2019,2(2):312-319. doi: 10.1007/s42114-019-00087-7
    [25]
    CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing,2019,26:94-105. doi: 10.1016/j.addma.2019.01.005
    [26]
    AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer[J]. Journal of Reinforced Plastics and Composites,2019,38(3):99-116. doi: 10.1177/0731684418807300
    [27]
    AL ABADI H, THAI H-T, PATON-COLE V, et al. Elastic properties of 3D printed fibre-reinforced structures[J]. Composite Structures,2018,193:8-18. doi: 10.1016/j.compstruct.2018.03.051
    [28]
    ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing,2018,22:157-164. doi: 10.1016/j.addma.2018.05.007
    [29]
    DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing,2017,16:146-152. doi: 10.1016/j.addma.2017.06.004
    [30]
    OZTAN C, KARKKAINEN R, FITTIPALDI M, et al. Microstructure and mechanical properties of three dimensional-printed continuous fiber composites[J]. Journal of Composite Materials,2018,53(2):002199831878193.
    [31]
    MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures,2016,153:866-875. doi: 10.1016/j.compstruct.2016.07.018
    [32]
    NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing,2019,26:227-241. doi: 10.1016/j.addma.2018.12.020
    [33]
    VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B: Engineering,2019,160:684-692. doi: 10.1016/j.compositesb.2018.12.094
    [34]
    CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [35]
    CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B: Engineering,2018,148:93-103. doi: 10.1016/j.compositesb.2018.04.054
    [36]
    CAMINERO M A, GARCÍA-MORENO I, RODRÍGUEZ G P, et al. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites[J]. Composites Part B: Engineering,2019,165:131-142. doi: 10.1016/j.compositesb.2018.11.091
    [37]
    IMERI A, FIDAN I, ALLEN M, et al. Fatigue analysis of the fiber reinforced additively manufactured objects[J]. The International Journal of Advanced Manufacturing Technology,2018,98(9):2717-2724.
    [38]
    PERTUZ A D, DÍAZ-CARDONA S, GONZÁLEZ-ESTRADA O A. Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique[J]. International Journal of Fatigue,2020,13:105275.1-105275.12.
    [39]
    AZAROV A V, ANTONOV F K, GOLUBEV M V, et al. Composite 3D printing for the small size unmanned aerial vehicle structure[J]. Composites Part B: Engineering,2019,169:157-163. doi: 10.1016/j.compositesb.2019.03.073
    [40]
    DICKSON A N, ROSS K-A, DOWLING D P. Additive manufacturing of woven carbon fibre polymer composites[J]. Composite Structures,2018,206:637-643. doi: 10.1016/j.compstruct.2018.08.091
    [41]
    LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design,2018,137:235-244.
    [42]
    SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:114-121. doi: 10.1016/j.compositesa.2018.07.029
    [43]
    BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing,2018,22:176-186. doi: 10.1016/j.addma.2018.04.039
    [44]
    ZHANG H, YANG D, SHENG Y. Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study[J]. Composites Part B: Engineering,2018,151:256-264. doi: 10.1016/j.compositesb.2018.06.017
    [45]
    O’CONNOR H J, DOWLING D P. Evaluation of the influence of low pressure additive manufacturing processing conditions on printed polymer parts[J]. Additive Manufacturing,2018,21:404-412. doi: 10.1016/j.addma.2018.04.007
    [46]
    FERREIRA R T L, AMATTE I C, DUTRA T A, et al. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers[J]. Composites Part B: Engineering,2017,124:88-100. doi: 10.1016/j.compositesb.2017.05.013
    [47]
    LOVE L J, KUNC V, RIOS O, et al. The importance of carbon fiber to polymer additive manufacturing[J]. Journal of Materials Research,2014,29(17):1893-1898. doi: 10.1557/jmr.2014.212
    [48]
    NING F, CONG W, QIU J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B: Engineering,2015,80:369-378. doi: 10.1016/j.compositesb.2015.06.013
    [49]
    DUTY C E, KUNC V, COMPTON B, et al. Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials[J]. Rapid Prototyping Journal,2017,23(1):181-189. doi: 10.1108/RPJ-12-2015-0183
    [50]
    HILL C, ROWE K, BEDSOLE R, et al. Materials and process development for direct digital manufacturing of vehicles[C]//International SAMPE Technical Conference. USA, 2016.
    [51]
    MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [52]
    LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology,2016,238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025
    [53]
    DUL S, FAMBRI L, PEGORETTI A. Fused deposition modelling with ABS-graphene nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2016,85:181-191. doi: 10.1016/j.compositesa.2016.03.013
    [54]
    TIAN X, LIU T, WANG Q, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites[J]. Journal of Cleaner Production,2017,142:1609-1618. doi: 10.1016/j.jclepro.2016.11.139
    [55]
    DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures,2019,212:381-388. doi: 10.1016/j.compstruct.2019.01.050
    [56]
    SHOFNER M L, LOZANO K, RODRÍGUEZ-MACÍAS F J, et al. Nanofiber-reinforced polymers prepared by fused deposition modeling[J]. Journal of Applied Polymer Science,2003,89(11):3081-3090. doi: 10.1002/app.12496
    [57]
    SEBERT A, NELSON J W, BERTACCO G. Anisotropic mechanical performance of 3D printed polymers[C] //Advanced Materials-Tech Connect Briefs 2017. 2017: 170.
    [58]
    SWOLFS Y, PINHO S T. 3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the translaminar fracture toughness[J]. Compo-sites Science and Technology,2019,182:107731.
    [59]
    GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies,2019,4(1):1800271.
    [60]
    G. G. “3D printing for continuous composites with continuous fibre.” Inc.: Cincinnati, OH, USA.
    [61]
    ATHREYA S R, KALAITZIDOU K, DAS S. Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding[J]. Composites Science and Technology,2011,71(4):506-510. doi: 10.1016/j.compscitech.2010.12.028
    [62]
    ZHU D, REN Y, LIAO G, et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling[J]. Journal of Applied Polymer Science,2017,134(39):45332. doi: 10.1002/app.45332
    [63]
    LUO M, TIAN X, ZHU W, et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research,2018,33(11):1632-1641. doi: 10.1557/jmr.2018.131
    [64]
    RAHIM T N A T, ABDULLAH A M, MD AKIL H. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites[J]. Polymer Reviews,2019,59(4):589-624. doi: 10.1080/15583724.2019.1597883
    [65]
    TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [66]
    LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
    [67]
    PARANDOUSH P, ZHOU C, LIN D. 3D printing of ultrahigh strength continuous carbon fiber composites[J]. Advanced Engineering Materials,2019,21(2):1800622.
    [68]
    MATSUZAKI R, NAKAMURA T, SUGIYAMA K, et al. Effects of set curvature and fiber bundle size on the printed radius of curvature by a continuous carbon fiber composite 3D printer[J]. Additive Manufacturing,2018,24:93-102. doi: 10.1016/j.addma.2018.09.019
    [69]
    FU S Y, LAUKE B, MÄDER E,et al. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing,2000,31(10):1117-1125. doi: 10.1016/S1359-835X(00)00068-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (1816) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return