Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
ZHANG Xiaofang, XIA Weimin, XING Junhong, et al. Research progress of polyvinylidene fluoride and its copolymer piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 997-1019. doi: 10.13801/j.cnki.fhclxb.20201210.004
Citation: ZHANG Xiaofang, XIA Weimin, XING Junhong, et al. Research progress of polyvinylidene fluoride and its copolymer piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 997-1019. doi: 10.13801/j.cnki.fhclxb.20201210.004

Research progress of polyvinylidene fluoride and its copolymer piezoelectric composites

doi: 10.13801/j.cnki.fhclxb.20201210.004
  • Received Date: 2020-10-14
  • Accepted Date: 2020-11-25
  • Available Online: 2020-12-11
  • Publish Date: 2021-04-08
  • Polymer piezoelectric materials polyvinylidene fluoride (PVDF) and its copolymers P(VDF-TRFE) and P(VDF-HFP) are typical organic polymer materials with piezoelectric properties. Currently, these materials attract great attention in academic and application area for their good mechanical properties, corrosion resistance, biocompatibility and easy processing. However, compared with the traditional inorganic piezoelectric ceramic materials, the piezoelectric constant of polymer piezoelectric materials is still relatively low, so improving the piezoelectric properties of such polymer piezoelectric materials has become one of the research hotspots at home and abroad. In this paper, the methods of improving the piezoelectric properties by combining PVDF and its copolymers with different functional materials at national and international levels in recent years are summarized, and the advantages and disadvantages of different types of fillers doped with different polymer piezoelectric materials and their development trends are prospected.

     

  • loading
  • [1]
    谭耀红, 刘呈坤, 毛雪, 等. 压电式纳米发电机及其混合器件的研究进展[J]. 材料工程, 2019, 47(10):10-21. doi: 10.11868/j.issn.1001-4381.2018.000665

    TAN Yaohong, LIU Chengkun, MAO Xue, et al. Research progress of piezoelectric nanogenerators and their hybrid devices[J]. Journal of Materials Engineering,2019,47(10):10-21(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000665
    [2]
    马驰, 潘崇祥, 闫丽玲, 等. 金属及其化合物掺杂PVDF介电/压电材料的研究进展[J]. 高分子通报, 2018(7):93-100.

    MA Chi, PAN Chongxiang, YAN Liling, et al. Advance on PVDF dielectric/piezoelectric material hybridized by metal particles or metal compounds[J]. Chinese Polymer Bulletin,2018(7):93-100(in Chinese).
    [3]
    骆懿, 于洋, 廖家明, 等. 高压静电纺丝工艺制备PVDF-ZnO/GR共聚物膜的压电性能研究[J]. 传感技术学报, 2019, 32(6):815-821. doi: 10.3969/j.issn.1004-1699.2019.06.003

    LUO Yi, YU Yang, LIAO Jiaming, et al. Piezoelectric properties of PVDF-ZnO/GR copolymer films prepared by high voltage electrospinning[J]. Chinese Journal of Sensors and Actuators,2019,32(6):815-821(in Chinese). doi: 10.3969/j.issn.1004-1699.2019.06.003
    [4]
    王稼祎. 基于氧化石墨烯和介孔二氧化硅的纳米药物载体的特性研究[D]. 南京: 东南大学, 2016.

    WANG Jiayi. Research on the drug nanocarriers based on graphene oxide and mesoporous silica[D]. Nanjing: Southeast University, 2016(in Chinese).
    [5]
    ZHAO X, ZHANG W, CHEN S, et al. Hydrophilicity and crystallization behaviour of PVDF/PMMA/TiO2(SiO2) composites prepared by in situ polymerization[J]. Journal of Polymer Research,2012,19(5):1-9.
    [6]
    刘婉婉, 高强, 王阳毅, 等. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(6):6-10, 22.

    LIU Wanwan, GAO Qiang, WANG Yangyi, et al. Preparation of ploy(vinylidene fluoride)/conductive TiO2 composite fiber piezoelectric membrane[J]. Journal of Textile research,2017,38(6):6-10, 22(in Chinese).
    [7]
    KIM M, WU Y S, KAN E C, et al. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications[J]. Polymer,2018,10(7):745.
    [8]
    SABRY R S, HUSSEIN A D. PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator[J]. Polymer Testing,2019,79:106001.
    [9]
    FAKHRI P, AMINI B, BAGHERZADEH R, et al. Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output[J]. RSC Advances,2019,9(18):10117-10123.
    [10]
    李静静, 卢辉, 蒋洁, 等. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(2):1-6.

    LI Jingjing, LU Hui, JIANG Jie, et al. High piezoelectric flexible electrospun zinc oxide/poly(vinylidene fluoride) composite fibrous membranes[J]. Journal of Textile Research,2018,39(2):1-6(in Chinese).
    [11]
    KAR E, BOSE N, DUTTA B, et al. 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester[J]. Energy Conversion and Management,2019,184:600-608.
    [12]
    YANG L, CHENG M, LYU W Y, et al. Tunable piezoelectric performance of flexible PVDF based nanocomposites from MWCNTs/graphene/MnO2 three-dimensional architectures under low poling electric fields[J]. Compo-sites Part A: Applied Science and Manufacturing,2018,107:536-544.
    [13]
    RAO Y, QU J M, MARINIS T, et al. A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory[J]. IEEE Transactions on Components & Packaging Technologies,2000,23(4):680-683.
    [14]
    TIAN G, DENG W L, GAO Y Y, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training[J]. Nano Energy,2019,59:574-581.
    [15]
    蔡振杰, 于成林, 赵程, 等. 压电陶瓷粉含量及表面附着微粒对0-3型压电复合材料性能的影响[J]. 机械工程材料, 2018, 42(6):46-49.

    CAI Zhenjie, YU Chenglin, ZHAO Cheng, et al. Effects of piezoelectric ceramic powder content and surface-attaching microparticles on properties of 0-3 type piezoelectric composite[J]. Materials for Mechanical Engineering,2018,42(6):46-49(in Chinese).
    [16]
    张艾丽, 米有军. 热压法制备压电陶瓷/聚合物复合材料及其性能的研究[J]. 佛山陶瓷, 2013, 23(9):10-12. doi: 10.3969/j.issn.1006-8236.2013.09.004

    ZHANG Aili, MI Youjun. Preparation of piezoelectric ceramic/polymer composite and properties of hot-pressing method[J]. Foshan Ceramics,2013,23(9):10-12(in Chinese). doi: 10.3969/j.issn.1006-8236.2013.09.004
    [17]
    WANKHADE S H, TIWARI S, GAUR A, et al. PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications[J]. Energy Reports,2020,6:358-364.
    [18]
    CHAMANKAR N, KHAJAVI R, YOUSEFI A A, et al. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications[J]. Ceramics International,2020,46(12):19669-19681.
    [19]
    刘卉, 刘云飞, 吕忆农, 等. 高压电性能和介电性能0-3型PZT/PVDF压电复合陶瓷的制备[J]. 南京工业大学学报(自科版), 2016, 38(4):28-32.

    LIU Hui, LIU Yunfei, LV Yinong, et al. Preparation of 0-3 type PZT/PVDF composite ceramics with high piezoelectric and dielectric properties[J]. Journal of Nanjing Tech University (Natural Science Edition),2016,38(4):28-32(in Chinese).
    [20]
    陆翠敏, 孟欢, 刘庆锁, 等. PVDF/PZNZT压电复合材料的结构与性能[J]. 复合材料学报, 2016, 33(3):628-634.

    LU Cuimin, MENG Huan, LIU Qingsuo, et al. Structures and properties of PVDF/PZNZT piezoelectric compo-sites[J]. Acta Materiae Compositae Sinica,2016,33(3):628-634(in Chinese).
    [21]
    张剑, 陈文革, 何超. 流延法制备0-3型PZT/PVDF压电复合膜的微观结构及性能[J]. 机械工程材料, 2012, 36(8):26-29.

    ZHANG Jian, CHEN Wenge, HE Chao, et al. Microstructure and properties of 0-3 PZT/PVDF piezoelectric composite film prepared by doctor-blade casting process[J]. Materials for Mechanical Engineering,2012,36(8):26-29(in Chinese).
    [22]
    BAIRAGI S, ALI S W. Poly (vinylidine fluoride)(PVDF)/Potassium Sodium Niobate(KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator[J]. Organic Electronics,2020,78:105547.
    [23]
    BAIRAGI S, ALI S W. A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre[J]. European Polymer Journal,2019,116:554-561.
    [24]
    YU K, HU S, YU W D, et al. Piezoelectric and dielectric properties of ((K0.475Na0.495Li0.03)NbO3-0.003ZrO2)/PVDF composites[J]. Journal of Electronic Materials,2019,48(4):2329-2337.
    [25]
    BAIRAGI S, ALI S W. Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: Significant enhancement of energy harvesting efficiency of the nanogenerator[J]. Energy,2020,198:117385.
    [26]
    SEOL J H, LEE J S, JI H N, et al. Piezoelectric and dielectric properties of (K0.44Na0.52Li0.04) (Nb0.86Ta0.10Sb0.04)O3-PVDF composites[J]. Ceramics International,2012,38:S263-S266.
    [27]
    PATRA A, PAL A, SEN S. Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor[J]. Ceramics International,2018,40(10):11196-11203.
    [28]
    ZHAO Y L, LIAO Q L, ZHANG G J, et al. High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF[J]. Nano Energy,2015,11:719-727.
    [29]
    HU P H, YAN L L, ZHAO C X, et al. Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property[J]. Composites Science and Technology,2018,168:327-335.
    [30]
    ZHU M M, LOU M N, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy,2020,69:104429.
    [31]
    夏毓霜, 李阳, 胡国华, 等. 静电纺PVDF/铌酸钠复合纤维膜制备及压电性能[J]. 工程塑料应用, 2020, 48(7):17-21, 32. doi: 10.3969/j.issn.1001-3539.2020.07.004

    XIA Yushuang, LI Yang, HU Guohua, et al. Preparation and piezoelectric properties of electrospun sodium niobate/poly(vinylidene fluoride) composite nanofiber membranes[J]. Engineering Plastics Application,2020,48(7):17-21, 32(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.07.004
    [32]
    SHIN D J, JI J H, KIM J, et al. Enhanced flexible piezoelectric energy harvesters based on BaZrTiO3-BaCaTiO3 nanoparticles/PVDF composite films with Cu floating electrodes[J]. Journal of Alloys and Compounds,2019,802:562-572.
    [33]
    JIN C R, HAO N J, XU Z, et al. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films[J]. Sensors and Actuators A-Physical,2020,305:111912.
    [34]
    DUDEM B, KIM D H, BHARAT L K, et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting[J]. Applied Energy,2018,230:865-874.
    [35]
    王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):18-28, 40.

    WANG Xixi, CAO Maosheng. Low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):18-28, 40(in Chinese).
    [36]
    WANG Y P, ZHANG X, GUO X B, et al. Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy[J]. Journal of Materials Science,2018,53(18):13081-13089.
    [37]
    KRISHNASWAMY J A, BURONI F C, GARCIA-MACIAS E, et al. Design of lead-free PVDF/CNT/BaTiO3 piezocomposites for sensing and energy harvesting: The role of polycrystallinity, nanoadditives, and anisotropy[J]. Smart Materials and Structures,2020,29(1):015021.
    [38]
    晏伯武. PVDF基复合材料高介电性能的研究进展[J]. 中国陶瓷, 2016, 52(10):1-5, 11.

    YAN Bowu. Research progress of high dielectric properties of polyvinylidene fluoride-based composites[J]. China Ceramics,2016,52(10):1-5, 11(in Chinese).
    [39]
    KUMAR R S, SARATHI T, VENKATARAMAN K K, et al. Enhanced piezoelectric properties of polyvinylidene fluoride nanofibers using carbon nanofiber and electrical poling[J]. Materials Letters,2019,255:126515.
    [40]
    SHI K M, SUN B, HUANG X Y, et al. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy,2018,52:153-162.
    [41]
    汤健, 刘军, 黄欢琦. 石墨烯掺杂锆钛酸铅/聚偏氟乙烯压电复合材料的制备及性能研究[J]. 化工新型材料, 2020, 48(5):85-89.

    TANG Jian, LIU Jun, HUANG Huanqi. Optimization of preparation process of PZT/PVDF piezoelectric compo-site doped with graphene[J]. New Chemical Materials,2020,48(5):85-89(in Chinese).
    [42]
    LEE J, LIM S. Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide[J]. Journal of Industrial and Engineering Chemistry,2018,67:478-485.
    [43]
    ABOLHASANI M M, SHIRVANIMOGHADDAM K, NAEBE M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators[J]. Composites Science and Technology,2017,138:49-56.
    [44]
    YANG L, ZHAO Q Y, CHEN K N, et al. PVDF-based composition-gradient multi-layered nanocomposites for flexible high-performance piezoelectric nanogenerators[J]. ACS Applied Materials and Interfaces,2020,12(9):11045-11054.
    [45]
    TIWARI S, GAUR A, KUMAR C, et al. Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting[J]. Energy,2019,171:485-492.
    [46]
    FU J, HOU Y D, GAO X, et al. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocompo-site filled with oriented BaTi2O5 nanorods with high power density[J]. Nano Energy,2018,52:391-401.
    [47]
    LI Y, XU M H, XIA Y S, et al. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity[J]. Chemical Engineering Journal,2020,388:124205.
    [48]
    赵旸周, 袁卫锋. 纳米二氧化硅/聚偏氟乙烯复合材料薄膜的压电性能[J]. 材料科学与工程学报, 2019, 37(4):599-603, 618.

    ZHAO Yangzhou, YUAN Weifeng. Piezoelectric properties of nano-SiO2/poly(vinylidene fluoride) composite film[J]. Journal of Materials Science & Engineering,2019,37(4):599-603, 618(in Chinese).
    [49]
    CHEN C, BAI Z K, CAO Y Z, et al. Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators[J]. Composites Science and Technology,2020,192:108100.
    [50]
    HE F A, LIN K, SHI D L, et al. Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching[J]. Composites Science and Technology,2016,137:138-147.
    [51]
    GHOSH S K, BISWAS A, SEN S, et al. Yb3+ assisted self-polarized PVDF based ferroelectric nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication[J]. Nano Energy,2016,30:621-629.
    [52]
    PONNAMMA D, PARANGUSAN H, TANVIR A, et al. Smart and robust electro spun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles[J]. Materials & Design,2019,184:108176.
    [53]
    MAHANTY B, GHOSH S K, GARAIN S, et al. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer[J]. Materials Chemistry and Physics,2017,186:327-332.
    [54]
    PHOOPLUB K, MUENSIT N. Electro-mechanical properties of poly(vinylidene fluoride-hexafluoropropylene) reinforced with zinc oxide nanostructure[J]. Micro & Nano Letters,2018,13(8):1063-1067.
    [55]
    TOHLUEBAJI N, PUTSON C, MUENSIT N. Enhanced electroactive β-phase formation and dielectric properties of piezoelectric electrospun nanofibers by ZnO nanoparticles[J]. Materials Today-Proceedings,2019,17:1637-1643.
    [56]
    SHIN S H, KIM Y H, JUNG J Y, et al. Solvent-assisted optimal BaTiO3 nanoparticles-polymer composite cluster formation for high performance piezoelectric nanogenerators[J]. Nanotechnology,2014,25(48):485401.
    [57]
    YANG L, ZHAO Q Y, HOU Y, et al. Flexible polyvinylidene fluoride-based nanocomposites with high and stable piezoelectric performance over a wide temperature range utilizing the strong multi-interface effect[J]. Composites Science and Technology,2019,174:33-41.
    [58]
    LEE S H, CHOI Y C, KIM M S, et al. Fabrication and characterization of piezoelectric composite nanofibers based on poly(vinylidene fluoride-co-hexafluoropropylene) and barium titanate nanoparticle[J]. Fibers and Polymers,2020,21(3):473-479.
    [59]
    WEGENER M, ARLT K. PZT/P(VDF-HFP) 0-3 composites as solvent-cast thin films: Preparation, structure and piezoelectric properties[J]. Journal of Physics D: Applied Physics,2008,41(16):165409.
    [60]
    MANDAL D, HENKEL K, SCHMEISSER D. Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF−HFP) nanofibers[J]. Physical chemistry chemical physics: PCCP,2014,16(22):10403-10407.
    [61]
    WU L K, HUANG G W, HU N, et al. Improvement of the piezoelectric properties of PVDF-HFP using AgNWs[J]. RSC Advances,2014,4(68):35896-35903.
    [62]
    GHOSH S K, SINHA T K, MAHANTY B, et al. Self-poled efficient flexible “ferroelectric” nanogenerator: A new class of piezoelectric energy harvester[J]. Energy Technology,2015,3(12):1190-1197.
    [63]
    HU B, HU N, WU L K, et al. Enhancement effects of two kinds of carbon black on piezoelectricity of PVDF-HFP composite films[J]. Functional Materials Letters,2015,8(3):SI 1540006.
    [64]
    CAI J, HU N, WU L K, et al. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology[J]. Composites Part A: Applied Science and Manufacturing,2019,121:223-231.
    [65]
    ADHIKARY P, MANDAL D. Enhanced electro-active phase in a luminescent P(VDF-HFP)/Zn2+ flexible composite film for piezoelectric based energy harvesting applications and self-powered UV light detection[J]. Physical Chemistry Chemical Physics,2017,19(27):17789-17798.
    [66]
    ADHIKARY P, BISWAS A, MANDAL D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition[J]. Nanotechnology,2016,27(49):495501.
    [67]
    ADHIKARY P, GARAIN S, RAM S, et al. Flexible hybrid Eu3+ doped P(VDF-HFP) nanocomposite film possess hypersensitive electronic transitions and piezoelectric throughput[J]. Journal of Polymer Science Part B: Polymer Physics,2016,54(22):2335-2345.
    [68]
    YUENNAN J, SUKWISUTE P, MUENSIT N. Effect of hydrated salts on the microstructure and phase transformation of poly (vinylidenefluoride-hexafluoropropylene) composites[J]. Materials Research Express,2018,5(5):055702.
    [69]
    CHINYA I, PAL A, SEN S. Flexible, hybrid nanogenerator based on Zinc Ferrite nanorods incorporated poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite for versatile mechanical energy harvesting[J]. Materials Research Bulletin,2019,118:110515.
    [70]
    PONNAMMA D, ALJAROD O, PARANGUSAN H, et al. Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application[J]. Materials Chemistry and Physics,2020,239:122257.
    [71]
    MA Y, TONG W S, WANG W J, et al. Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties[J]. Composites Science and Technology,2018,168:397-403.
    [72]
    ZHANG S J, TONG W S, WANG J, et al. Modified sepiolite/PVDF-HFP composite film with enhanced piezoelectric and dielectric properties[J]. Journal of Applied Polymer Science,2020,137(9):48412.
    [73]
    张旭. 聚偏氟—三氟乙烯及与FePt复合多铁薄膜的制备和性能研究[D]. 保定: 河北大学, 2010.

    ZHANG Xu. Investigation of preparation and physical properties of P(VDF-TrFE) and P(VDF-TrFE)/FePt multiferroic composite films[D]. Baoding: Hebei University, 2010(in Chinese).
    [74]
    HU X P, YU S H, CHU B J. Increased effective piezoelectric response of structurally modulated P(VDF-TrFE) film devices for effective energy harvesters[J]. Materials and Design,2020,192:108700.
    [75]
    CHEN S, LOU Z, CHEN D, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device[J]. Science China Materials,2016,59(3):173-181.
    [76]
    LI J, ZHAO C M, XIA K, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification[J]. Applied Surface Science,2019,463:626-634.
    [77]
    DODDS J S, MEYERS F N, LOH K J. Piezoelectric characterization of PVDF-TrFE thin films enhanced with ZnO nanoparticles[J]. IEEE Sensors Journal,2012,12(6):1889-1890.
    [78]
    KARUMUTHIL S C, RAJEEV S P, VARGHESE S. Poly(vinylidene fluoride-trifluoroethylene)-ZnO nanoparticle composites on a flexible poly(dimethylsiloxane) substrate for energy harvesting[J]. ACS Applied Nano Materials,2019,2(7):4350-4357.
    [79]
    SIDDIQUI S, KIM D I, DUY L T, et al. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage[J]. Nano Energy,2015,15:177-185.
    [80]
    GUAN X Y, XU B G, GONG J L. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors[J]. Nano Energy,2020,70:104516.
    [81]
    CHEN X L, LI X M, SHAO J Y, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors[J]. Small,2017,13(23):UNSP 1604245.
    [82]
    ZHOU Z, ZHANG Z, ZHANG Q L, et al. Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: A cost-effective approach to high-performance piezoelectric nanogenerators[J]. ACS Applied Materials and Interfaces,2020,12(1):1567-1576.
    [83]
    ZHOU X R, PARIDA K, HALEVI O, et al. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure[J]. Nano Energy,2020,72:104676.
    [84]
    NUNES-PEREIRA J, SENCADAS V, CORREIA V, et al. Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites[J]. Composites Part B: Engineering,2015,72:130-136.
    [85]
    AN S, JO H S, LI G, et al. Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanoparticles[J]. Advanced Functional Materials,2020,30(25):2001150.
    [86]
    KANG H B, HAN C S, PYUN J C, et al. (Na, K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators[J]. Composites Science and Technology,2015,111:1-8.
    [87]
    CHEN H J, HAN S J, LIU C, et al. Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement[J]. Sensors and Actuators A-Physica,2016,245:135-139.
    [88]
    SAHOO R, MISHRA S, UNNIKRISHNAN L, et al. Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films[J]. Materials Science in Semiconductor Processing,2020,117:105173.
    [89]
    疏金成, 曹茂盛. 石墨烯基电磁功能材料[J]. 表面技术, 2020, 49(2):29-40.

    SHU Jincheng, CAO Maosheng. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):29-40(in Chinese).
    [90]
    HABIBUR R M, YAQOOB U, MUHAMMAD S, et al. The effect of RGO on dielectric and energy harvesting properties of P(VDF-TrFE) matrix by optimizing electroactive b phase without traditional polling process[J]. Materials Chemistry and Physics,2018,215:46-55.
    [91]
    YAQOOB U, HABIBUR R M, SHEERAZ M, et al. Realization of self-poled, high performance, flexible piezoelectric energy harvester by employing PDMS-rGO as sandwich layer between P(VDF-TrFE)-PMN-PT composite sheets[J]. Composites Part B: Engineering,2019,159:259-268.
    [92]
    LI P, ZHAO L B, JIANG Z D, et al. Self-powered flexible sensor based on the graphene modified P(VDF-TrFE) electro spun fibers for pressure detection[J]. Macromolecular Materials and Engineering,2019,304(12):1900504.
    [93]
    BHUNIA R, GUPTA S, FATMA B, et al. Milli-Watt power harvesting from dual triboelectric and piezoelectric effects of multifunctional green and robust reduced graphene oxide/P(VDF-TrFE) composite flexible films[J]. ACS Applied Materials and Interfaces,2019,11(41):38177-38189.
    [94]
    WU L K, JING M, LIU Y L, et al. Power generation by PVDF-TrFE/graphene nanocomposite films[J]. Composites Part B: Engineering,2019,164:703-709.
    [95]
    骆懿, 廖家明, 于洋, 等. 基于静电纺丝法制备P(VDF-TRFE)/石墨烯(GR)薄膜的柔性复合压电纳米发电机[J]. 传感技术学报, 2020, 33(2):200-206. doi: 10.3969/j.issn.1004-1699.2020.02.007

    LUO Yi, LIAO Jiaming, YU Yang, et al. Flexible composite piezoelectric nanogenerator based on P(VDF-TRFE)/GR film prepared by electrospinning[J]. Chinese Journal of Sensors and Actuators,2020,33(2):200-206(in Chinese). doi: 10.3969/j.issn.1004-1699.2020.02.007
    [96]
    ZHAO C X, NIU J, ZHANG Y Y, et al. Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator[J]. Composites Part B: Engineering,2019,178:UNSP 107447.
    [97]
    NAKHMANSON S M, CALZOLARI A, MEUNIER V, et al. Spontaneous polarization and piezoelectricity in boron nitride nanotubes[J]. Physical Review B: Condensed Matter and Materials Physics,2003,67:235406.
    [98]
    LIU Y Z, ZHANG H, YU J X, et al. Ferroelectric P(VDF-TrFE)/POSS nanocomposite films: Compatibility, piezoelectricity, energy harvesting performance, and mechanical and atomic oxygen erosion[J]. RSC Advances,2020,10(29):17377-17386.
    [99]
    YE S B, CHENG C, CHEN X M, et al. High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space[J]. Nano Energy,2019,60:701-714.
    [100]
    MAITY K, GARAIN S, HENKEL K, et al. Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor[J]. ACS Applied Polymer Materials,2020,2(2):862-878.
    [101]
    CHOI Y J. YOO M J, KANG H W, et al. Dielectric and piezoelectric properties of ceramic-polymer composites with 0-3 connectivity type[J]. Journal of Electroceramics,2013,30(1-2):30-35.
    [102]
    KANG J, XIE P S, LI Y, et al. Development of acoustic emission sensor based on the 0-3 PZT/P(VDF-TFE) piezoelectric composite[J]. Mechanical Structures and Smart Materials,2014,487:58-62.
    [103]
    杨照光, 张涛允, 温定筠, 等. 基于0-3型压电复合材料的声发射传感器的研制[J]. 电子元件与材料, 2014, 33(6):69-71.

    YANG Zhaoguang, ZHANG Taoyun, WEN Dingyun, et al. Development of acoustic emission sensor based on the 0-3 PZT/P(VDF-TFE) piezoelectric composite[J]. Electronic Components & Materials,2014,33(6):69-71(in Chinese).
    [104]
    刘欣然. 聚合物基压电复合材料研究进展[J]. 河北民族师范学院学报, 2017, 37(1):123-128.

    LIU Xinran. Research progress on polymer-based piezoelectric composites[J]. Journal of Hebei Normal University for Nationalities,2017,37(1):123-128(in Chinese).
    [105]
    ALAM M M, LEE S, KIM M, et al. Ultra-flexible nanofiber-based multifunctional motion sensor[J]. Nano Energy,2020,72:104672.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (2397) PDF downloads(596) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return