DOI: 10.13801/j. cnki. fhclxb. 20170608.004

中图分类号:) OTQ340.64

静电纺 PMMA/EVOH-SO₃Li 锂离子电池 隔膜复合材料的制备及性能

巩桂考*,王磊,徐阿文

(哈尔滨理工大学 材料科学与工程学院,哈尔滨 150080)

摘 要: 以聚甲基丙烯酸甲酯(PMMA)和聚乙烯-2% 轉磺酸锂(EVOH-SO₃Li)为原料,通过高压静电纺丝法进 行交替纺丝,制备 PMMA/EVOH-SO₃Li 锂离子电轴隔膜复合材料。通过 FTIR、SEM、万能拉伸试验仪、TGA、 IM6 型电化学工作站和电池循环测试设备 对 PMMA/EVOH-SO₃Li 隔膜复合材料的性能进行检测表征。结果表 明: PMMA/EVOH-SO₃Li 隔膜复合材料俱有清晰的三维网状结构,与 EVOH-SO₃Li 隔膜材料相比,改性后 PMMA/EVOH-SO₃Li 隔膜复合材料的北隙率、吸液率和拉伸强度分别提高至 80%、340%和 3.18 MPa,起始热 分解温度升高至 294℃,热收缩率也有所降低,并表现出良好的电化学性能。其中电化学稳定窗口由 5.0V 增加 到5.6 V,界面阻抗由 420 cm 9 0 降低至 262.31 Ω,离子电导率则由 1.560×10⁻³ S cm 提高至 2.089×10⁻³ S/cm, 并且经过 100 次循环充成中后,容量保持率仍高达 93.7%。

关键词: 锂离子电池隔膜;复合材料;聚甲基丙烯酸甲酯;聚乙烯-乙烯醇磺酸锂;高压静电纺丝;热收缩率;电 化学性能

文献标志码: A 文章编号: 1000

€ (900-3851(2018)03-0477-08

Preparation and properties of PMNA/EVOH-SO₃Li Li-ion battery separator composite by electrospinning

GONG Graten, WANG Lei, XU Awen

(School of Materials Science and Engineering) Harbin University of Science and Technology, Harbin 190080, China)

Abstract: Polymethylmethacevtate (Ψ MMA)/lithium ethylene-vinyl alcohol copolymer subtract (EVOH-SO₃Li) Liion battery separator composite was prepared by means of electrostatic spinning alternated, PMMA and EVOH-SO₃Li as raw materials. The performance of PMMA/EVOH-SO₃Li separator composite was characterized by FTIR, SEM, universal tensile tester, TGA, IM6 electrochemical workstation and battery cycler. The results show that PMMA/EVOH-SO₃Li separator composite has a clear three-dimensional network structure. Compared with EVOH-SO₃Li separator, the porosity, absorption rate and tensile strength of modified PMMA/EVOH-SO₃Li separator composite are increased to 80%, 340% and 3. 18 MPa, respectively. The initial thermal decomposition temperature is also rised to 294°C. The thermal shrinkage rate is reduced. The excellent electrochemical performance is exhibited. The electrochemical stability window is increased from 5. 0 V to 5. 6 V. The interfacial impedance is reduced from 420. 69 Ω to 262. 31 Ω . The ionic conductivity is increased from 1. 560×10⁻³ S/cm to 2. 089×10⁻³ S/cm. The coulombic efficiency is 93. 7% after 100 cycles of charge and discharge.

Keywords: Li-ion battery separator; composite; polymethylmethacrylate; lithium ethylene-vinyl alcohol copolymer sulfate; electrospinning; thermal shrinkage rate; electrochemical properties

收稿日期: 2017-03-25; 录用日期: 2017-05-31; 网络出版时间: 2017-06-08 13:50

网络出版地址: https://doi.org/10.13801/j.cnki.fhclxb.20170608.004

通讯作者: 巩桂芬, 博士, 教授, 硕士生导师, 研究方向为高压静电纺丝技术、聚合物电池隔膜 E-mail: ggf-hust@163.com

引用格式: 巩桂芬, 王磊, 徐阿文. 静电纺 PMMA/EVOH-SO₃Li 锂离子电池隔膜复合材料的制备及性能[J]. 复合材料学报, 2018, 35(3): 477-484.

GONG Guifen, WANG Lei, XU Awen. Preparation and properties of PMMA/EVOH-SO₃Li Li-ion battery separator composite by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(3): 477-484 (in Chinese).

温度上升时,会造成隔膜融化,从而使电池产生冒烟、起火甚至爆炸等安全性问题,危害人身和财产安全^[12-13]。因此采用与电解液亲和能力强的聚合物隔膜取代繁烯烃隔膜,有助于克服锂离子电池使用过程中电解液泄露的问题,提高锂离子电池的使用安全性,对锂离子电池的发展具有重大的现实意义^[14-15]。

设计高性能的隔膜材料需考虑高温条件下的形态稳定性、电解液吸附能力和三维立体化隙结构。 静电纺丝技术作为目前一种制备超知纤维膜的成熟 方法,可以通过改变高分子崩破体、添加各种填充 颗粒及改变工艺参数达到控制纳米纤维形态和孔隙 率大小的目的,获得各国学者广泛关注^[16-18]。通过 该方法制得的纳米纤维,直径一般在 10~100 nm 之间,具有比表面积大、孔隙率高、孔径分布均匀 等优点,能克服商业聚烯烃隔膜孔隙率低、吸液性 能差、离子电导率低等缺点,改善锂离子电池的充 放电及循环性能^[19-21]。

聚甲基丙烯酸甲酯(PMMA)具有价格便宜、易 加工成型、力学性能好、成膜后吸液率高、与锂电 池正负极的相容性较好、界面阻抗低和离子电导率 高等优点,常被用作增强材料来改善隔膜性能。例 如,Flora等^[22]制备了聚丙烯腈(PAN)/PMMA 聚 合物电解质,并对其性能进行了分析,研究发现, 当 PAN 和 PMMA 含量分别为 75wt% 和 25wt% 时,其离子电导率达到最大值。Sohn 等^[23]通过简 单的浸渍涂布的方法制备了表面包覆聚乙烯(PE) 的微孔聚偏氟乙烯(PVDF)-HFP/PMMA 锂离子

电池隔膜,发现其孔隙率和吸液率都有了较大提 升。乙烯-乙烯醇共聚物(EVOH)是一种由亲水性 乙烯醇和疏水性乙烯链段构成的无规聚合物,该聚 合物具有良好的加工性和优异的阻隔性,加工成形 简单、透明度高、亲水性好,在食品包装和医疗等 领域得到了广泛的应用,并且通过调节乙烯醇和乙 烯共聚单体,可以方便的调节其阻气性、阻湿性和 加工性能。聚乙烯-乙烯醇磺酸锂(EVOH-SO₃Li) ⁰是1,3-丙烷磺酸内酯在叔丁醇锂催化下与 EVOH 发生开环聚合反应制得的离子型接枝聚合物,因此 既具有 EVOH 优良的亲水性和加工性能,增加隔 膜的吸液率,提高隔膜的保液性。同时 EVOH-SO₃Li分子内还存在能自由移动的锂离子,因此能 够有效提高隔膜的锂离天电导率,大大提高隔膜的 锂离子迁移数,是理想的锂离子电池隔膜材料^[24]。 本研究通过结合PMMA优异的力学性能和 EVOH-SO26易加工、润湿性好、阻隔性能好等特 点,进⊖步提高 EVOH-SO₃Li 锂离子电池隔膜性 能》以EVOH-SO3Li为基体,PMMA为增强体, 通过将 PMMA 和 EVOH-SO₃Li 纺丝液交替进行 高压静电纺丝,获得 PMMA/EVOH-SO-G 复合纤 维膜,并对其性能进行测试与分析

1 实验材料及方法

1.1 原材料

乙烯-乙烯醇共聚物(EVOH),E3808,日本 合成化学公司;叔百醇锂,化学纯,上海欧金实业 有限公司;1,30两烷磺酸内酯,化学纯,湖北和 昌化工有限公司;聚甲基丙烯酸甲酯(PMMA), M,25,000,国药集团化学试剂有限公司;N,N-甲基乙酰胺(DMAc),分析纯,天津富宇精细 化工有限公司;丙酮,分析纯,台山市众城化工 有限公司;正丁醇,分析纯,台山市众城化工 有限公司;乙醚,分析纯,台山市众城化工有限 公司;电解液,LBC305-1,深圳市科晶智达科技 有限公司。

1.2 PMMA/EVOH-SO₃Li 复合隔膜的制备

以蒸馏后的 60 mL DMAc 作为溶剂,以在 50℃下干燥的 6.72 g 叔丁醇锂和 10 g EVOH 为溶 质,60℃恒温水浴搅拌,分别配置叔丁醇锂溶液和 EVOH 溶液。待叔丁醇锂完全溶解后,将 9.72 g 的 1,3-丙烷磺酸内酯少量多次分批加入,继续搅 拌 3 h,然后将其倒入 EVOH 溶液中,继续在 60℃ 下搅拌4h,最后将所得混合溶液缓慢倒入丙酮中, 反复洗涤,直到淡黄色粘性固体析出,将其置于 50℃干燥箱中干燥24h,使丙酮挥发,即得棕黄色 固体 EVOH-SO₃Li。

按照表 1 制备绝对黏度为 13.92 Pa•s 的 PMMA纺丝液和绝对黏度为 12.74 Pa•s 的 EVOH-SO₃Li纺丝液。具体步骤如下:将 PM-MA粉末溶于 DMAc中,60℃水浴搅拌 5 h,使 PMMA完全溶解得 PMMA 纺丝液;将 EVON SO₃Li切块溶于 DMAc,60℃下水浴搅拌 2 使 EVOH-SO₃Li完全溶解得 EVOH-SO₃Li药丝 液,将两种纺丝液分别置于烧杯中静置消泡 24 h 后备用。

表 1 PMMA 和 EVONESO, Li 纺丝液配方 Table 1 Formula of PMMA solution and

EVØH-SO₃Lis	olution
-------------	---------

Solution	Component	Mass fraction/ %
DMMA - SOO	PMMA	43
PINIMA	DMAc	57
EVOLUSO Li colution	EVOH-SO ₃ Li	40
EVOH-SO3 L1 solution	DMAc	60

Note: DMAc-N, N-Dimethylacetamide.

将 EVOH-SO₃Li 纺丝液和 PMMA 纺丝液分 别抽入 20 mL 的一次性注射器中,安装 10⁺ 针头, 以旋转的滚筒为接收装置,通过两个注射器不断更 换,实现 EVOH-SO₃Li 纺丝液和 PMMA 纺丝液的 交替纺丝制备 PMMA/EVOH-SO₃Li 锂离子电池 隔膜复合材料。

1.3 性能测试

采用美国 Thermo Nicolet 公司的 AVA-TAR370型傅里叶转变红外光谱仪在室温下对隔膜 进行红外光谱测试,分析隔膜的化学组成。

采用荷兰飞利浦公司的 SIRION 200 型扫描电子显微镜对喷金后隔膜的微观形貌进行观察。

将干燥的隔膜称重后放入正丁醇中,在室温下 浸泡2h后取出,用滤纸快速拭去表面多余的正丁 醇并称重,根据下式计算其孔隙率^[25]:

 $arphi = rac{M_2-M_1}{
ho_{
m b} imes V} imes 100\%$

式中: φ —隔膜的孔隙率(%); M_1 —浸泡前隔膜质 量(g); M_2 —浸泡后隔膜质量(g);V浸泡前隔膜体 积(cm³); ρ_b —正丁醇密度(g/cm³)。

将干燥的隔膜称重并放入电解液中,在Ar填

充的手套箱中室温下浸泡2h后取出,用滤纸快速 拭去表面多余的电解液并称重,根据下式计算其吸 液率^[25]:

$$\eta = rac{M_2 - M_1}{M_1} imes 100\%$$

式中: η 一隔膜的吸液率(%); M_1 一浸泡前隔膜质 量(g); M_2 一浸泡后隔膜的质量(g)。

将隔膜裁剪成 20 mm×20 mm 的正方形,分别 在 80℃、100℃、120℃、150℃、180℃下放置 2 h, 取出后测量其横向和纵向变化率,对隔膜的热收缩 性能进行分析^[26]。

采用美国 Prinke Elmer 公司的 Pyris-6 TGA 热 失重分析仪在 2。保护下以 20℃/min 的升温速率 从 100℃升温到 650℃,对隔膜的热稳定性进行测 试长分析。

采用德国 Zahner 的 IM6 型电化学工作站对所 组装的纽扣电池进行阳极线性伏安扫描(LSV)和交 流阻抗谱图测试,对隔膜的电化学稳定窗口、界面 阻抗和离子电导率进行测定,其中电化学稳定窗口 测试电池体系以不锈钢片(SS)为正极、锂金属片 (Li)为负极和参比电极,线件伏安扫描电位范围为 3~6.5 V,扫描速率为 0.002 V/s;界面阻抗测试 电池体系以锂金属(f)(Li)为正、负极,交流阻抗扫 描频率范围为 (f)~10⁴ Hz,正弦振幅为 5 mV;离 子电导率测试电池体系以不锈钢片(SS)为正、负 极, 交流阻抗扫描频率范围为 0.1~10⁴ Hz,正弦 振幅为 5 mV,测得隔膜的本体电阻 R_b,由下式计 算隔膜离子电导率:

 $\eta = \frac{d}{R_{\rm b}S}$

式中: η 为隔膜的离子电导率(S/cm);d为隔膜的 厚度(cm); R_b 为隔膜的本体电阻(Ω);S为隔膜的 面积(cm²)。

采用 LiFePO₄ 材料为正极、锂金属片为负极, 组成"Li/隔膜/LiFePO₄"测试体系的纽扣电池。将 组装后的扣式电池静置 24 h 后,采用 NEWARE 电池测试系统对其进行循环寿命测试,在 0.2 C 倍 率下进行循环充放电容量测试,充放电区间为 2.5~4.2 V,循环次数为 100 次。

2 结果与讨论

2.1 PMMA/EVOH-SO₃Li隔膜化学结构

图 1 为 EVOH-SO₃Li 和 PMMA/EVOH-SO₃Li 隔膜的红外谱图。可以看出,两条曲线均存在 EVOH-SO₃Li的特征峰,即3500~3330 cm⁻¹处 较宽的羟基(--OH)伸缩振动峰、1 183 cm⁻¹处亚 硫酰基(S=O)伸缩振动峰、1 078 cm⁻¹ 处窄而强 的仲羟基碳氧单键(C-O)伸缩振动峰。两条曲线 上还存在三处亚甲基($-CH_2-$)吸收峰,即 2 930 cm⁻¹处较强的亚甲基(--CH₂--)对称伸缩振 动峰、2 853 cm⁻¹处亚甲基(--CH₂--)非对称伸缩 曲振动峰。此外,两条曲线上在 1224 cm⁻¹处还存 在较强的醚键(C-O-C)伸缩振动峰。对比两条曲 线,可观察到 PMMA/EVOL SO₃Li 在1 723 cm⁻¹处 存在 PMMA 中酯基(COOR—)伸缩振动峰,而 EVOH-SO₃Li 谱图上并无此峰,由此可以证明, EVOH 接枝介磺酸根离子,并且 PMMA/EVOH-SO₃Lic隔膜复合材料中存在 PMMA。

2.2 PMMA/EVOH-SO₃Li隔膜微观形貌

图 1 EVOH-SO3Li和 PMMA/EVOH-SO3Li隔膜的FTIR 谱图 Fig. 1 FTIR spectra of EVOH-SO3Li and PMMA/EVOH-SO3Li membranes

2.3 PMMA/EVOH-SQ3Li 隔膜基本物理性能

表 2 为 Celgard 家肉烯(PP)、EVOH-SO₃ Li和 PMMA/EVOH-SO₃ Li隔膜的几种基本物理性能。 可以看出,与 Celgard PP 隔膜相比,静电纺丝法制 备的隔膜具有更高的孔隙率和吸液率,并且由于较 粗的 PMMA 纤维在 EVOH-SO₃ Li 纤维层与层之 间形成了架空结构,从而使 PMMA/EVOH-SO₃ Li 隔膜复合材料的孔隙率得到进一步提高,由 EVOH-SO₃ Li隔膜的 68%提高至 80%。何时由于 PMMA 纤维的分子链中侧基与电解液中碳酸酯类 的氧存在较强的相互作用,能吸收大量的电解液, 使 PMMA/EVOH-SO₃ Li隔膜复合材料的吸液率 提高至 340%。并且 PWMA 纤维的加入也使隔膜 的拉伸强度由 1. 200 Pa 提高至 3.18 MPa,这是由 于 PMMA 分子 医VOH-SO₃ Li 分子形成氢键,增 大了纤维系纤维之间的结合力。

2.4 RMMA/EVOH-SO3Li 隔膜热性能

\\密 3 为 Celgard PP、EVOH-SO₃Li 和 PMMA/

图 2 EVOH-SO3Li和 PMMA/EVOH-SO3Li 隔膜的 SEM 图像 Fig. 2 SEM images of EVOH-SO3Li and PMMA/EVOH-SO3Li membranes

Table 2 - Physical properties of Cergard polypropylene (PP), EVOH-50311 and PMMA/EVOH-50311 memoranes					
Sample	Thickness/ μm	Porosity/ ½	Electrolyte uptake/ ½	Tensile strength/MPa	
Celgard PP	25	43	153	134.4	
EVOH-SO ₃ Li	30	68	244	1.92	
PMMA/EVOH-SO ₃ Li	45	80	340	3.18	

表 2 Celgard 聚丙烯(PP)、EVOH-SO3Li和 PMMA/EVOH-SO3Li 隔膜的物理性能 e 2 Physical properties of Celgard polypropylene (PP), EVOH-SO3Li and PMMA/EVOH-SO3Li membra

EVOH-SO₃Li隔膜的 TGA 曲线。可以看出, EVOH-SO₃Li隔膜的起始分解温度为 271℃,而 PMMA/EVOH-SO₃Li隔膜复合材料的起始分解 温度则为 294℃,较其提高近 20℃。这是面子 PMMA 的热稳定性比 EVOH-SO₃Li高、面加入 PMMA 使纤维之间形成氢键,从面提离了 PM-MA/EVOH-SO₃Li隔膜复合材料的热稳定性。此 外,两种隔膜的起始分解温度为高于 Celgard PP 隔膜,因此满足作为锂离子电池隔膜使用的要求。

表 3 为不同温度、 Celgard PP、EVOH-SO₃Li 和 PMMA/EVOH-SO₃Li 隔膜的热收缩率。可以 看出,经高度静电纺丝制得的隔膜在 80~120℃下 的热收缩案均低于 Gelcard PP 隔膜,并且在 150℃ 条件下, Gelcard PP 隔膜已经开始熔融无法正常使

隔膜的 TGA 曲线

Fig. 3 TGA curves of Celgard PP, EVOH-SO₃Li and PMMA/EVOH-SO₃Li membranes

Table 3

用时,EVOH-SO₃Li和PMMA/EVOH-SO₃Li隔 應的热收缩率仍保持在10%左右。此外,通过比 较还可以发现,PMMA的加入使隔膜的热收缩率 有所降低,这是由于PMMA的热稳定性比 EVOH-SO₃Li好,且PMMA的加入能在纤维之间 形成氢键,使分子之间的结合更紧密,导致PM-MA/EVOH-SO₃Li隔膜复合材料受热时尺寸更稳 定。同时,由于在高压静电纺丝过程中,聚合物 纤维到达接收端时会招隔膜纵向发生轻微取向, 使隔膜发生纵向热收缩时需要克服的分子间作用 力大于隔膜发生横向热收缩时需要克服的分子间作用 力大于隔膜发生横向热收缩率存在横向和纵 向的差异,横向热收缩率大于隔膜的纵向热收 缩率。

2.5 PMMA/EVOH-SO₃Li隔膜电化学性能

图 4 为 Celgard PP、EVOH-SO。Ci和PMMA/ EVOH-SO。Li隔膜的电化学稳定窗口曲线。可以 看出,与 Celgard PP 隔膜在 4. 不后电流出现明显 增加相比,通过静电纺丝制备的隔膜在 5.0 V 以内 电流基本保持稳定,说明高分子电解质在该电压范 围内没有因发生电化学反应而分解,并且 PMMA/ EVOH-SO、Si 翻膜复合材料电化学稳定窗口高达 5.6 X、电显高于 EVOH-SO。Li隔膜的电化学稳定 窗口 So 0 V,这是由于与 EVOH-SO。Li隔膜相比, 复合隔膜的孔隙率更高,使电解液的吸液率有所提 高,同时 PMMA 中的酯基与锂离子电池的电解液 具有较好的相容性,使隔膜在电解液中的稳定性增

表 3	不同温度下 Celgard	PP、EVOH-SO3Li 和 PMN	1A/EVOH-SO₃Li 隔膜的熬	收缩率
Thermal shr	rinkage of Celgard PP,	EVOH-SO ₃ Li and PMMA	/EVOH-SO ₃ Li membranes	at different tempertures

Sample	Direction	Thermal shrinkage/ %			
		80℃	100℃	120°C	150℃
Colmond DD	MD	4.0	4.1	14.7	_
Celgard Fr	TD	4.2	7.9	29.5	
EVOLESO I :	MD	0	2.7	6.6	9.2
E v OH-SO ₃ L1	TD	0	5.4	11.4	13
DMMA/EVOH SO L:	MD	0	0.5	1.2	3.4
$\Gamma WIWA/E = 0.01-503 LI$	TD	0	0.8	2.7	8.7

Notes: MD- Machine direction; TD- Transverse direction.

强,导致 PMMA/EVOH SO, Li 隔膜复合材料的电化学稳定窗口较 EVOH SO, Li 隔膜有一定程度提高。

图 5 为 Celeard PP、EVOH-SO₃Li和 PMMA/ EVOH-SO, A 隔膜的界面阻抗图谱。可知,在"Li/ 隔膜/Li"电池测试体系下,三种隔膜的界面阻抗谱 图在高频区均近似为一个圆弧,在低频区则近似为 一条直线。通过拟合圆弧在高频和低频区与实轴交 点之间的距离可知,Celgard PP、EVOH SO₃Li和 PMMA/EVOH-SO₃Li隔膜的界面阻抗分别为 553.36 Ω、420.69 Ω和 262.37 (Ω)通过比较可以 发现,与传统 PP 隔膜相比、通过静电纺丝制备的 隔膜界面阻抗均有所降低,这是由于通过静电纺丝 法制备的隔膜具有更好的孔隙率和吸液率,减少了 对锂离子迁移的阻碍。而且与 EVOH-SO₃Li隔膜

相比,PMMA/EVOH-SO₃Li隔膜复合材料的界面 阻抗降低了近一半,一方面是由于PMMA为极性 高分子聚合物,而且分子链中的酯基与电解液有很 强的亲和性,使复合隔膜能够吸收和储存较多的电 解液,促进了电解质中锂离子快速进入到聚合物电 解质中,从而提高了锂离子的迁移速率。另一方面 是由于 EVOH-SO₃Li 纤维和 PMMA 纤维层与层 问形成架空结构,使复合隔膜孔隙率在静电纺丝 的基础上进一步增大,有利于载流子通过,因此 PMMA 的加入降低了锂电极与隔膜间的界面阻抗, 提高了锂电极与隔膜间的界面稳定性。

图 6 为 Celgard PP、EVOH-SO₃Li 和 PMMA/ EVOH-SO₃Li 隔膜的交流阻抗图谱。可知,在 "SS/隔膜/SS"电池测试体系下,三种隔膜的交流阻 抗图谱在高频区均没有出现半圆弧, 这表明该电池 体系的载流子为离子,其离子电导率即为总电导 率,因此通过拟合曲线与实轴的交点即得隔膜的本 体电阻。并由公式计算可知, PP、EVOH-SO₃Li和 RMMA/EVOH-SO₃Li 隔膜在室温下的离子电导率 分别为 0.462×10⁻³ S/cm、1.560×10⁻³ S/cm 和 2.089×10⁻³ S/cm。通过比较可以发现。由静电纺 丝法制备的两种隔膜的离子电导案较商业 PP 隔膜 的高出一个数量级。这主要是由天聚烯烃隔膜的分 子结构中不含有极性基团, 与常用的有机碳酸酯类 电解液的分子间相互作用为小,并且隔膜制备的工 艺条件导致微孔膜结晶相较多,分子链排列规整, 有机碳酸酯类水分子难以浸润到隔膜内部,使其离 子电导率较低;一而通过静电纺丝法制备的 EVOH-·方面具有较高的孔隙率,具有的大量 SO3版隔膜

网状孔隙结构有助于锂离子在充放电过程中发生迁 移;另一方面分子结构中极性基团相对较多,能与 有机碳酸酯类电解液形成较强的相互作用,有利于 电解液的浸润,并且还存在与强酸的酸根离子相连 的锂离子,有助于在充放电过程中锂离子的解离和 迁移,进而提高了离子电导率。在此基础上,对于 PMMA/EVOH-SO₃Li隔膜复合材料而言,一方面 由于所加入的 PMMA 为无定形聚合物,分子间作 用力较弱,有利于有机碳酸酯类电解液的小分子每00 聚合物相互作用而浸润到隔膜内部,提高隔膜与电 解液的亲和性及吸液率,从而提高离子电景率;另 一方面, PMMA 分子链段中含有大量的酯基, 这 类富电官能团有助于与在充放电过程中电解液中游 离的锂离子进行配位与解离而形成离子迁移通道, 从而提高离子电导率,因此PMMA/EVOH-SO₃Li 隔膜复合材料的离子电导率相比于 EVOH-SO₃Li 隔膜有明显增加。

2.6 PMMA/EVOH-SO₃Li 隔膜电池性能

图 7. 发出 Celgard PP、EVOH-SO₃Li 和 PM-MA/EVOH-SO₃Li 薄膜作为隔膜所组装的电池的循环寿命曲线。可以看出,由 EVOH-SO₃Li 和 PMMA/EVOH-SO₃Li 薄膜作为隔膜做组装的电池均具有较高的容量保持率,在 100 次循环充放电后,其容量保持率分别为 91. 7%和 98. %、而商用 Celgard PP 隔膜所组装的电池在相同测试条件下的容量保持率仅为 79%,这是由于静电纺丝制备的 EVOH-SO₃Li 和 PMMA/EVOH-SO₃Li 隔膜与商用 Celgard PP 隔膜相比具有较低的电池内阻和较高的离子电导率,循环性能的提高是隔膜对电解液的吸收能力和离子电导率的增加所导致的,这些因

素使在循环过程中锂离子迁移更加容易。同时,通 过之前的分析可以得出,PMMA中的酯基与电解 液具有更高的亲和力,因此其具有更高的吸液率使 电池具有更好的循环性能,容量保持率较 EVOH-SO₃Li隔膜提高。

3 结 论

(1) 聚甲基丙烯酸甲酯/聚乙烯-乙烯醇磺酸锂 中MMA/EVOH-SO₃Li)隔膜复合材料中两种纤维 构成清晰的层状复合结构,并且较粗的 PMMA 纤 维在 EVOH-SO₃Li 纤维层与层之间形成了架空结 构,纤维粘连现象减小,孔径增大,使孔隙率由 EVOH-SO₃Li 隔膜的 68%提高至 80%,吸液率由 244%提高至 340%,拉伸强度由 1.92 MPa 提高至 3.18 MPa。

(2) PMMA 纤维的加入使隔膜的热性能得到 进一步改善,起始热分解温度提高近 20℃,而且降 低了隔膜的热收缩率。

登PMMA 纤维的加入拓宽了隔膜的电化学 稳定窗口,使最大稳定电压从 5.0 V 提高至5.6 V, 有效地减小电池的内阻,使界面阻抗从 420.69 Ω 降低至 262.31 Ω,并且提高隔膜的锂离子迁移能 力,使隔膜在室温下的离子电导率从 1.560× 10⁻³ S/cm 提高至 2.089×10⁻³ S/cm,各项电化学 性能均优于 Celgard PP 隔膜

(4) PMMA/EVOH 50%Li 隔膜复合材料作为 隔膜组装的电池在进行循环充放电 100 次后的容量 保持率高达 83,6%,较 EVOH-SO₃Li 隔膜的 91.7%略有提高,但远高于商用 Celgard PP 隔膜。

- ^{JU}LI H, MA X T, SHI J L, et al. Preparation and properties of poly(ethylene oxide)gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(6): 2641-2647.
- [2] ARMAND M, TARASCON J M. Building better batteries [J]. Nature, 2008, 451(7179): 652-657.
- [3] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
- [4] WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures [J]. Nature, 2016, 529(7587): 515-518.
- [5] LIFS, WUYS, CHOUJ, et al. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Mate-

rials, 2015, 27(1): 130-137.

- [6] DING Y, HOU H, ZHAO Y, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science, 2016, 61: 67-103.
- [7] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540.
- [8] YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie (International ed. in English), 2012, 51 (24): 5798-5800.
- [9] JANSEN A N, KAHAIAN A J, KEPLER K D, et al be velopment of a high-power lithium-ion battery[J], Tournal of Power Sources, 1999, 81-82: 902-905.
- [10] LU L, HAN X, LI J, et al. A review of the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 228 (5): 272-288.
- [11] HUANG X. Separator technologies for lithium-ion batteries
 [J]. Journal of Solid State Electrochemistry, 2011, 15(4):
 649-662.
- [12] XIONG M, TANG H, WANG Y, et al. Ethylcellulosecoated partyoloffin separators for lithium-ion batteries with improved satety performance [J]. Carbohydrate Polymers, 2014, 101: 1140-1146.
- [13] 于宾, 焦晓宁. P(VDF-HFP)/Al₂O₃ 复合锂离子电池隔膜的 电化学性能[J]. 电源技术, 2015, 39(4): 702-705.
 YU B, JIAO X N. Electrochemical characterization of P(VDF-HFP)/Al₂O₃ composite separator for thron battery [J]. Chinese Journal of Power Sources, 2015, 39(4): 702-705 (in Chinese).
- [14] YANG C L, LI Z H, LI W J, et al. Batwing-like polymer membrane consisting of PMN A grafted electrospun PVDF-SiO₂ nanocomposite fibers for lithium-ion batteries[J]. Journal of Membrane Science, 2015, 495(1): 341-350.
- [15] NOTO D V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: Present, past and future[J]. Electrochimica Acta, 2011, 57: 4-13.
- [16] 孙美玲,唐浩林,潘牧. 动力锂离子电池隔膜的研究进展
 [J]. 材料导报, 2011, 25(9): 44-50.
 SUN M L, TANG H L, PAN M. A review on the separatory of power Li-ion batteries[J]. Materials Review, 2011, 25 (9): 44-50 (in Chinese).
- [17] 吴再辉,秦珊,白帆,等. 阻抗渐变低介电 BaTiO₃/PVDF复合纤维膜的设计与电纺制备[J]. 复合材料学报, 2016, 33

(8): 1671-1676.

WU Z H, QIN S, BAI F, el al. Design and fabrication of low-dielectric BaTiO₃/PVDF composite fibrous mat with impedance gradient by electrospinning[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1671-1676 (in Chinese).

- [18] 王春红,贺文婷,王瑞.利用静电纺丝技术制备纳米黏土/聚
 乳酸复合纳米纤维与其表征[J].复合材料学报,2015,32
 (2):378-384.
 - WANG C H, HE W T, WANG R. Preparation and characterization of nanoclay/polylactide composite nanofibers via electrospinning technique[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 378-384 (in Chinese).
- [19] FANG J, WANG X G, LIN T. Functional applications of electrospun nanofibers[J]. Nanofibers-production, Properties and Functional Applications, 2011, 53(15): 2265-2286.
- [20] ZHANG J J, LIU Z H, KONG Q S, et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion hattery separator[J]. ACS Applied Materials & Interfaces, 2013, 5(1): 128-134.
- [21] HAO J. UD A. LI Z, et al. A novel polyethylene terephthalate nonwoven separator based on electrospinning technous for lithium ion battery[J]. Journal of Membrane Science, 2013, 428: 11-16.
 - FLORA X H, ULAGANATHAN M, BABU R S, et al. Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications[J]. Ionics, 2012, 18(8): 731-736.
- [23] SOHN J Y, IM J S, SHIN J, et a POPF-HFP/PMMAcoated PE separator for lithium (and attery [J]. Journal of Solid State Electrochemistry, (2) 2, 16(2): 551-556.
- [24] 郭金亮, 巩桂芬, 张阳, EDOH 磺酸锂无纺布薄膜的制备及性能研究[J]. 电池, 2012, 17(1): 31-34.
 GUO J L, GONG G F, ZHANG Y. Investigation on preparation and properties of EVOH-SO₃Li non-woven membrane [J]. Chinese Battery Industry, 2012, 17(1): 31-34 (in Chinese).
 - b) DEE J. LEE C L, PARK K, et al. Synthesis of an Al₂O₃coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium-ion batteries[J]. Journal of Power Sources, 2014, 248(4): 1211-1217.
- [26] DING J, KONG Y, YANG J R. Polyimide/Poly-(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery[J]. Journal of the Electrochemical Society, 2012, 159(9): A1474-A1480.